Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ergonomics ; 67(2): 194-206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37278045

ABSTRACT

Excessive solar radiation negatively affects cognitive performance. Occupational guidelines typically combine environmental components into one value, such as wet-bulb globe temperature (WBGT). Here, we evaluated cognitive performance in two similar 28.6 °C WBGT-effective (WBGTeff) that were designed differently; using high or low levels of solar radiation. Eight soldiers were exposed to a virtual-reality environment in a climate chamber set to high (900 Wm-2) or low solar radiation conditions (300 Wm-2). Soldiers walked 3 x 30 min at 5 kmh-1. Cognitive performance was evaluated using a virtual-reality scenario and a computerised test battery. There was no statistically significant effect of condition on the cognitive tasks (p > 0.05). Associations were found between mean body temperature (Tb) and visual detection (P ≤ 0.01). Differences in solar radiation with similar WBGTeff (28.6 °C) do not cause large systematic differences in cognitive performance. Certain aspects of cognitive performance (i.e. response inhibition) seem to be partly associated with Tb rather than solar radiation.Practitioner summary: Cognitive performance was evaluated in two similar WBGT conditions that were designed differently; using high or low levels of solar radiation. Differences in solar radiation with similar WBGT do not cause systematic differences in cognitive performance. Certain aspects of cognition were partly associated with mean body temperature rather than solar radiation.


Subject(s)
Heat Stress Disorders , Hot Temperature , Humans , Sunlight , Temperature , Cold Temperature
2.
Ergonomics ; 66(12): 2148-2164, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36916391

ABSTRACT

This study investigates how cognitive performance is affected by the combination of two stressors that are operationally relevant for helicopter pilots: heat load and hypobaric hypoxia. Fifteen participants were exposed to (1) no stressors, (2) heat load, (3) hypobaric hypoxia, and (4) combined heat load and hypobaric hypoxia. Hypobaric hypoxia (13,000 ft) was achieved in a hypobaric chamber. Heat load was induced by increasing ambient temperature to ∼28 °C. Cognitive performance was measured using two multitasks, and a vigilance task. Subjective and physiological data (oxygen saturation, heart rate, core- and skin temperature) were also collected. Mainly heat load caused cognitive performance decline. This can be explained by high subjective heat load and increased skin temperature, which takes away cognitive resources from the tasks. Only the arithmetic subtask was sensitive to hypobaric hypoxia, whereby hypobaric hypoxia caused a further performance decline in addition to the decline caused by heat load.Practitioner summary: Little is known about how multiple environmental stressors interact. This study investigates the combined effects of heat load and hypobaric hypoxia on cognitive performance. An additive effect of heat load and hypobaric hypoxia was found on a arithmetic task, which may be attributed to independent underlying mechanisms.


Subject(s)
Cognitive Dysfunction , Hot Temperature , Humans , Hypoxia/psychology , Aircraft , Cognition
3.
Biology (Basel) ; 11(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36009849

ABSTRACT

During the early stage of a fire, a process operator often acts as the first responder and may be exposed to high heat radiation levels. The present limit values of long- (>15 min) and short-term exposure (<5 min), 1.0 and 1.5 kW/m2, respectively, have been set using physiological models and manikin measurements. Since human validation is essentially lacking, this study investigated whether operators' protective clothing offers sufficient protection during a short-term deployment. Twelve professional firefighters were exposed to three radiation levels (1.5, 2.0, and 2.5 kW/m2) when wearing certified protective clothing in front of a heat radiation panel in a climatic chamber (20 °C; 50% RH). The participants wore only briefs (male) or panties and a bra (female) and a T-shirt under the operators' clothing. Skin temperatures were continuously measured at the chest, belly, forearm, thigh, and knee. The test persons had to stop if any skin temperature reached 43 °C, at their own request, or when 5 min of exposure was reached. The experiments showed that people in operators' clothing can be safely exposed for 5 min to 1.5 kW/m2, up to 3 min to 2.0 kW/m2, and exposure to 2.5 kW/m2 or above must be avoided unless the clothing can maintain an air gap.

4.
Cartilage ; 13(2_suppl): 1490S-1500S, 2021 12.
Article in English | MEDLINE | ID: mdl-31540553

ABSTRACT

OBJECTIVE: Excessive articular loading, for example, an ankle sprain, may result in focal osteochondral damage, initiating a vicious degenerative process resulting in posttraumatic osteoarthritis (PTOA). Better understanding of this degenerative process would allow improving posttraumatic care with the aim to prevent PTOA. The primary objective of this study was to establish a drop-weight impact testing model with controllable, reproducible and quantitative axial impact loads to induce osteochondral damage in caprine tibiotalar joints. We aimed to induce osteochondral damage on microscale level of the tibiotalar joint without gross intra-articular fractures of the tibial plafond. DESIGN: Fresh-frozen tibiotalar joints of mature goats were used as ex vivo articulating joint models. Specimens were axially impacted by a mass of 10.5 kg dropped from a height of 0.3 m, resulting in a speed of 2.4 m/s, an impact energy of 31.1 J and an impact impulse of 25.6 N·s. Potential osteochondral damage of the caprine tibiotalar joints was assessed using contrast-enhanced high-resolution micro-computed tomography (micro-CT). Subsequently, we performed quasi-static loading experiments to determine postimpact mechanical behavior of the tibiotalar joints. RESULTS: Single axial impact loads with a mass of 15.5 kg dropped from 0.3 m, resulted in intra-articular fractures of the tibial plafond, where a mass of 10.55 kg dropped from 0.3 m did not result in any macroscopic damage. In addition, contrast-enhanced high-resolution micro-CT imaging neither reveal any acute microdamage (i.e., microcracks) of the subchondral bone nor any (micro)structural changes in articular cartilage. The Hexabrix content or voxel density (i.e., proteoglycan content of the articular cartilage) on micro-CT did not show any differences between intact and impacted specimens. However, quasi-static whole-tibiotalar-joint loading showed an altered biomechanical behavior after application of a single axial impact (i.e., increased hysteresis when compared with the intact or nonimpacted specimens). CONCLUSIONS: Single axial impact loads did not induce osteochondral damage visible with high-resolution contrast-enhanced micro-CT. However, despite the lack of damage on macro- and even microscale, the single axial impact loads resulted in "invisible injuries" because of the observed changes in the whole-joint biomechanics of the caprine tibiotalar joints. Future research must focus on diagnostic tools for the detection of early changes in articular cartilage after a traumatic impact (i.e., ankle sprains or ankle fractures), as it is well known that this could result in PTOA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Ankle Joint , Cartilage, Articular/diagnostic imaging , Goats , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...