Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16296, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009652

ABSTRACT

In this work, the spinel FeAl2O4 was prepared and functionalized step-by-step with silica and alaninium nitrate ionic liquid ([DL-Ala][NO3]) to produce a bio-based multi-layered nanostructure (nano FeAl2O4-SiO2@[DL-Ala][NO3]). The obtained magnetized inorganic-bioorganic nanohybrid characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating-sample magnetometry (VSM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), transmission electron microscopy (TEM), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), X-ray fluorescence (XRF), and X-Ray diffraction (XRD) analysis. A facile synthesis of some tricyclic dihydro-spiro[chromeno[2,3-c]pyrazole-4,2'-indene]triones and dihydro-spiro[chromeno[2,3-c]pyrazole-4,3'-indoline]diones via domino four-component one-pot reaction of various hydrazine derivatives, ethyl acetoacetate, heterocyclic 1,2-ketones (ninhydrin, isatin, 5-bromoisatin) and cyclic 1,3-diketones (dimedone and 1,3-cyclohexanedine), examined in the presence of nano FeAl2O4-SiO2@[DL-Ala][NO3] nanohybrid in refluxing aqueous media, successfully. The multi-aspect characteristics of the nanohybrid which consist of magnetized inorganic and bioorganic parts, could be the reason of its special catalytic efficacy. The recovery and reusability of the FeAl2O4-SiO2@[DL-Ala][NO3] magnetized nanoparticles (MNPs) were performed in two runs without significant activity loss.

2.
RSC Adv ; 12(17): 10219-10236, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35425005

ABSTRACT

In this work, a new magnetized composite of bismuth (Fe3-x Bi x O4) was prepared and functionalized stepwise with silica, triethylargininium iodide ionic liquid, and Zn(ii) to prepare a multi-layered core-shell bio-nanostructure, [Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii)]. The modified bismuth magnetic amino acid-containing nanocomposite was characterized using several techniques including Fourier-transform infrared (FT-IR), X-ray fluorescence (XRF), vibrating sample magnetometer (VSM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), thermogravimetric/differential scanning calorimetric (TGA/DSC) analysis, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The magnetized bionanocomposite exhibited high catalytic activity for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[b][1,4]diazepine malononitriles via five-component reactions between 1,2-phenylenediamines, Meldrum's acid, malononitrile, aldehydes, and isocyanides at room temperature in ethanol. The efficacy of this protocol was also examined to obtain malonamide derivatives via pseudo six-component reactions of 1,4-phenylenediamine, Meldrum's acid, malononitrile, aldehydes, and isocyanides. When the above-mentioned MCRs were repeated under the same conditions with the application of sonication, a notable decrease in the reaction time was observed. The recovery and reusability of the metal-bio functionalized bismuthmagnetite were examined successfully in 3 runs. Furthermore, the characteristics of the recovered Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii) were investigated though FESEM and EDAX analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...