Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4404, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782952

ABSTRACT

Residential homes and light commercial buildings usually require substantial heat and electricity simultaneously. A combined heat and power system enables more efficient and environmentally friendly energy usage than that achieved when heat and electricity are produced in separate processes. However, due to financial and space constraints, residential and light commercial buildings often limit the use of traditional large-scale industrial equipment. Here we develop a micro-combined heat and power system powered by an opposed-piston engine to simultaneously generate electricity and provide heat to residential homes or light commercial buildings. The developed prototype attains the maximum AC electrical efficiency of 35.2%. The electrical efficiency breaks the typical upper boundary of 30% for micro-combined heat and power systems using small internal combustion engines (i.e., <10 kW). Moreover, the developed prototype enables maximum combined electrical and thermal efficiencies greater than 93%. The prototype is optimally designed for natural gas but can also run renewable biogas and hydrogen, supporting the transition from current conventional fossil fuels to zero carbon emissions in the future. The analysis of the unit's decarbonization and cost-saving potential indicate that, except for specific locations, the developed prototype might excel in achieving decarbonization and cost savings primarily in US northern and middle climate zones.

2.
Nanomaterials (Basel) ; 10(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171855

ABSTRACT

This paper investigates the cooling performance of nanofluid (NF) mixed convection in a porous I-shaped electronic chip with an internal triangular hot block using Buongiorno's two-phase model. This type of cavity and hot block geometry has not been studied formerly. The NF was assumed to be a mixture of water and CuO nanoparticles (NP) up to 4% of volume concentration. As most published mathematical models for the thermal conductivity of NF give inaccurate predictions, a new predictive correlation for effective thermal conductivity was also developed with a high accuracy compared to the experimental data. The results showed that any increase in the NP volume concentration enhances the average Nusselt number (Nu¯) and the normalized entropy generation, and reduces the thermal performance of the cavity in all orientations of the hot block. The maximum enhancement in cooling performance was 17.75% and occurred in the right-oriented hot block in the sand-based porous cavity. Furthermore, adding the NP to the base fluid leads to a more capable cooling system and enhances the irreversibility of the process.

SELECTION OF CITATIONS
SEARCH DETAIL
...