Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 704: 149674, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38387328

ABSTRACT

BACKGROUND: Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are a major cause of male infertility by disrupting spermatogenesis. OBJECTIVE: Here, we examined the potential protective benefits of kaempferol (KMF), a flavonol known for its antioxidant properties, on BPA-induced reproductive toxicity in adult male rats. METHODS: Human skin fibroblast cells (HNFF-P18) underwent cell viability assays. Thirty-five male Wistar rats were assigned to four groups: 1) control, 2) BPA (10 mg/kg), 3,4) BPA, and different dosages of KMF (1 and 10 mg/kg). The study examined the rats' testosterone serum level, antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), oxidative markers malondialdehyde (MDA) and total antioxidant capacity (TAC), body weight, weight ratios of testis and prostate, and histopathological examinations. RESULTS: The study revealed that using KMF to treat rats exposed to BPA increased cell viability. Moreover, the rats' testosterone levels, which BPA reduced, showed a significant increase after KMF was included in the treatment regimen. Treatment with BPA led to oxidative stress and tissue damage, but simultaneous treatment with KMF restored the damaged tissue to its normal state. Histopathology studies on testis and prostate tissues showed that KMF had an ameliorative impact on BPA-induced tissue damage. CONCLUSIONS: The research suggests that KMF, a flavonol, could protect male rats from the harmful effects of BPA on reproductive health, highlighting its potential healing properties.


Subject(s)
Antioxidants , Kaempferols , Phenols , Adult , Rats , Male , Humans , Animals , Antioxidants/pharmacology , Kaempferols/pharmacology , Rats, Wistar , Testis/metabolism , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/metabolism , Oxidative Stress , Testosterone/metabolism
2.
Article in English | MEDLINE | ID: mdl-35990838

ABSTRACT

One of the main causes of acute liver failure is overdose with acetaminophen. Excessive consumption of acetaminophen leads to the production of NAPQI (N-acetyl-p-benzoquinone imine) through the activity of the enzyme cytochrome c oxidase. For this purpose, the effect of galangin nanoparticles with antioxidant activities will be evaluated for the treatment of acetaminophen-induced hepatotoxicity. In this study, after the synthesis of galangin nanoparticles and particle size determination, mice were divided into six groups. Before treatment, a single dose (350 mg/kg) of acetaminophen was administered by gavage in all groups. The activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), as well as biochemical factors FRAP and MDA in serum were measured and a histopathological study was performed. The prepared nanoparticles produced in this research were characterized by the SEM, DLS, and ZETA potential, and the average particle size was obtained in the range of 150 nm. Serum levels of liver enzymes (AST and ALT) in the nanoparticle group decreased significantly compared with the control group (P < 0.05). In the group without treatment, the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes increased significantly compared with the treatment groups. Also, galangin nanoparticles, at a dose of 20 mg/kg, improve cell damage in hepatocytes and preserve the tissue structure of the liver. Galangin nanoparticles reduce the acetaminophen-induced hepatotoxicity by reducing the number of liver function indices. According to our findings, the liver-protective effects of the nanoparticle may be due to its antioxidant properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...