Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
AIDS ; 38(4): 607-610, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38416554

ABSTRACT

We studied the relationship between viral diversity and susceptibility to broadly neutralizing antibodies (bNAbs) in longitudinal plasma and peripheral blood mononuclear cells from 89 people with HIV who initiated antiretroviral therapy (ART) during acute and early HIV-1 infection (AEHI). HIV-1 diversity and predicted bNAb susceptibility were comparable across AEHI. Diversity evolution was not observed during ART, suggesting (pro)viruses at initiation or during treatment may identify individuals with susceptible virus for bNAb interventional trials.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Infections/drug therapy , Broadly Neutralizing Antibodies , Leukocytes, Mononuclear
2.
PLoS Pathog ; 18(4): e1010467, 2022 04.
Article in English | MEDLINE | ID: mdl-35452496

ABSTRACT

A key challenge for the development of a cure to HIV-1 infection is the persistent viral reservoir established during early infection. Previous studies using Toll-like receptor 7 (TLR7) agonists and broadly neutralizing antibodies (bNAbs) have shown delay or prevention of viral rebound following antiretroviral therapy (ART) discontinuation in simian-human immunodeficiency virus (SHIV)-infected rhesus macaques. In these prior studies, ART was initiated early during acute infection, which limited the size and diversity of the viral reservoir. Here we evaluated in SHIV-infected rhesus macaques that did not initiate ART until 1 year into chronic infection whether the TLR7 agonist vesatolimod in combination with the bNAb PGT121, formatted either as a human IgG1, an effector enhanced IgG1, or an anti-CD3 bispecific antibody, would delay or prevent viral rebound following ART discontinuation. We found that all 3 antibody formats in combination with vesatolimod were able to prevent viral rebound following ART discontinuation in a subset of animals. These data indicate that a TLR7 agonist combined with antibodies may be a promising strategy to achieve long-term ART-free HIV remission in humans.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Broadly Neutralizing Antibodies , HIV Antibodies/therapeutic use , Immunoglobulin G , Macaca mulatta , Toll-Like Receptor 7/agonists , Viral Load
3.
AIDS ; 36(2): 205-214, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34586088

ABSTRACT

OBJECTIVE: Persistence of the viral reservoir is the main barrier to curing HIV. Initiation of ART during acute HIV infection can limit the size and diversity of the reservoir. In depth characterization of the reservoir in individuals who initiate ART during acute infection will be critical for clinical trial design and cure strategies. METHODS: Four cohorts with participants who initiated ART during acute infection or during chronic infection were enrolled in a cross-sectional, noninterventional study. Viral reservoir was evaluated by the Intact Proviral DNA Assay (IPDA), the Total HIV DNA Assay (THDA) and the Quantitative Viral Outgrowth Assay (QVOA). Viral diversity and susceptibility to V3-glycan bNAbs were determined by genotyping of the viral envelope gene. RESULTS: Participants who initiated ART during the acute Fiebig I-IV stages had lower level of total HIV DNA than participants who initiated ART during chronic infection whereas no difference was observed in intact HIV DNA or outgrowth virus. Participants who initiated ART during Fiebig I-IV also had lower viral diversity and appeared to have higher susceptibility to bNAbs than participants initiating ART during chronic infection. CONCLUSION: Individuals initiating ART during Fiebig I-IV had small viral reservoirs, low viral diversity, and high susceptibility to bNAbs, and would be an optimal target population for proof-of-concept HIV cure trials.


Subject(s)
HIV Infections , HIV-1 , Anti-Retroviral Agents/therapeutic use , Broadly Neutralizing Antibodies , Cross-Sectional Studies , HIV-1/genetics , Humans , Viral Load
4.
J Acquir Immune Defic Syndr ; 88(1): 61-69, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34397744

ABSTRACT

BACKGROUND: HIV envelope (env) diversity represents a significant challenge for the use of broadly neutralizing antibodies (bNAbs) in HIV treatment and cure studies. Screening for viral sensitivity to bNAbs to select eligible trial participants will be important to improve clinical efficacy; however, no universal approach has been established. METHODS: Pre-antiretroviral therapy plasma virus from participants in the Zurich Primary HIV Infection (ZPHI) study was genotyped and phenotyped for sensitivity to the bNAbs elipovimab (EVM, formerly GS-9722) and 3BNC117. The genotyping and phenotyping assessments were performed following the Clinical Laboratory Improvement Amendments of 1988 guidelines as required for entry into clinical trials. The genotypic-based prediction of bNAb sensitivity was based on HIV env amino acid signatures identified from a genotypic-phenotypic correlation algorithm using a subtype B database. RESULTS: Genotyping the plasma virus and applying env sensitivity signatures, ZPHI study participants with viral sensitivity to EVM and 3BNC117 were identified. ZPHI study participants with virus sensitive to EVM and 3BNC117 were also identified by phenotyping the plasma virus. Comparison of the genotypic and phenotypic sensitivity assessments showed strong agreement between the 2 methodologies. CONCLUSIONS: The genotypic assessment was found to be as predictive as the direct measurement of bNAb sensitivity by phenotyping and may, therefore, be preferred because of more rapid turnaround time and assay simplicity. A significant number of the participants were predicted to have virus sensitive to EVM and 3BNC117 and could, thus, be potential participants for clinical trials involving these bNAbs.


Subject(s)
Antiretroviral Therapy, Highly Active , Broadly Neutralizing Antibodies/genetics , HIV Antibodies/immunology , HIV Antibodies/metabolism , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Drug Resistance, Viral , Genotype , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Humans , Phenotype
5.
Sci Transl Med ; 13(599)2021 06 23.
Article in English | MEDLINE | ID: mdl-34162752

ABSTRACT

Toll-like receptor 7 (TLR7) agonists, in combination with other therapies, can induce sustained control of simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) in nonhuman primates. Here, we report the results of a randomized, double-blind, placebo-controlled phase 1b clinical trial of an oral TLR7 agonist, vesatolimod, in HIV-1-infected controllers on antiretroviral therapy (ART). We randomized participants 2:1 to receive vesatolimod (n = 17) or placebo (n = 8) once every other week for a total of 10 doses while continuing on ART. ART was then interrupted, and the time to viral rebound was analyzed using the Kaplan-Meier method. Vesatolimod was associated with induction of immune cell activation, decreases in intact proviral DNA during ART, and a modest increase in time to rebound after ART was interrupted. The delayed viral rebound was predicted by the lower intact proviral DNA at the end of vesatolimod treatment (13 days after the final dose). Inferred pathway analysis suggested increased dendritic cell and natural killer cell cross-talk and an increase in cytotoxicity potential after vesatolimod dosing. Larger clinical studies will be necessary to assess the efficacy of vesatolimod-based combination therapies aimed at long-term control of HIV infection.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Humans , Pteridines , Simian Acquired Immunodeficiency Syndrome/drug therapy , Toll-Like Receptor 7 , Viral Load
6.
J Infect Dis ; 218(9): 1447-1452, 2018 09 22.
Article in English | MEDLINE | ID: mdl-29878133

ABSTRACT

A 48-year-old woman was infected with a vpr-defective human immunodeficiency virus (HIV)-1 molecular clone. Seroconversion was markedly delayed, and without treatment she had durably suppressed viremia and normal T-cell levels. Neutralizing antibody and CD8+ T-cell immune responses against HIV-1 were unremarkable. Viral sequences confirmed the source but evolved defective nef, suggesting an unknown mechanistic link to vpr. There were subtle qualitative defects in T and B cells. To our knowledge, this is the only case of human infection with a characterized defective HIV-1 molecular clone, which furthermore recapitulated live-attenuated vaccination in macaque models of HIV-1 vaccine research.


Subject(s)
AIDS Vaccines/immunology , Gene Products, vpr/immunology , HIV Infections/immunology , HIV-1/immunology , Vaccines, Attenuated/immunology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cloning, Molecular , Female , Humans , Middle Aged , Vaccination/methods
7.
J Infect Dis ; 218(4): 572-580, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29617879

ABSTRACT

Background: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children. To date, no vaccine is approved for the broad population of healthy infants. MEDI8897, a potent anti-RSV fusion antibody with extended serum half-life, is currently under clinical investigation as a potential passive RSV vaccine for all infants. As a ribonucleic acid virus, RSV is prone to mutation, and the possibility of viral escape from MEDI8897 neutralization is a potential concern. Methods: We generated RSV monoclonal antibody (mAb)-resistant mutants (MARMs) in vitro and studied the effect of the amino acid substitutions identified on binding and viral neutralization susceptibility to MEDI8897. The impact of resistance-associated mutations on in vitro growth kinetics and the prevalence of these mutations in currently circulating strains of RSV in the United States was assessed. Results: Critical residues identified in MARMs for MEDI8897 neutralization were located in the MEDI8897 binding site defined by crystallographic analysis. Substitutions in these residues affected the binding of mAb to virus, without significant impact on viral replication in vitro. The frequency of natural resistance-associated polymorphisms was low. Conclusions: Results from this study provide insights into the mechanism of MEDI8897 escape and the complexity of monitoring for emergence of resistance.


Subject(s)
Amino Acid Substitution , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immunologic Factors/pharmacology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Binding Sites , Biological Products/pharmacology , Crystallography, X-Ray , Drug Resistance, Viral , Gene Frequency , Humans , Immune Evasion , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Neutralization Tests , Prevalence , Protein Conformation , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , United States/epidemiology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Virus Attachment/drug effects , Virus Replication/drug effects
8.
Sci Transl Med ; 9(388)2017 05 03.
Article in English | MEDLINE | ID: mdl-28469033

ABSTRACT

Prevention of respiratory syncytial virus (RSV) illness in all infants is a major public health priority. However, no vaccine is currently available to protect this vulnerable population. Palivizumab, the only approved agent for RSV prophylaxis, is limited to high-risk infants, and the cost associated with the requirement for dosing throughout the RSV season makes its use impractical for all infants. We describe the development of a monoclonal antibody as potential RSV prophylaxis for all infants with a single intramuscular dose. MEDI8897*, a highly potent human antibody, was optimized from antibody D25, which targets the prefusion conformation of the RSV fusion (F) protein. Crystallographic analysis of Fab in complex with RSV F from subtypes A and B reveals that MEDI8897* binds a highly conserved epitope. MEDI8897* neutralizes a diverse panel of RSV A and B strains with >50-fold higher activity than palivizumab. At similar serum concentrations, prophylactic administration of MEDI8897* was ninefold more potent than palivizumab at reducing pulmonary viral loads by >3 logs in cotton rats infected with either RSV A or B subtypes. MEDI8897 was generated by the introduction of triple amino acid substitutions (YTE) into the Fc domain of MEDI8897*, which led to more than threefold increased half-life in cynomolgus monkeys compared to non-YTE antibody. Considering the pharmacokinetics of palivizumab in infants, which necessitates five monthly doses for protection during an RSV season, the high potency and extended half-life of MEDI8897 support its development as a cost-effective option to protect all infants from RSV disease with once-per-RSV-season dosing in the clinic.


Subject(s)
Palivizumab/therapeutic use , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/therapeutic use , Respiratory Syncytial Viruses/pathogenicity , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Female , Humans , Infant , Infant, Newborn , Male , Palivizumab/pharmacokinetics , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/drug effects
9.
J Infect Dis ; 214(4): 612-6, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27357340

ABSTRACT

Humanized mice reconstituted with a human immune system can be mucosally infected with human immunodeficiency virus (HIV), opening up the possibility of studying HIV transmission in a small-animal model. Here we report that passive immunization with the broadly neutralizing antibody b12 protected humanized mice against repetitive intravaginal infection in a dose-dependent manner. In addition, treatment with the antibody PGT126, which is more potent in vitro, was more efficacious in vivo and provided sterilizing protection. Our results demonstrate that humanized mice can be used as a small-animal model to study the efficacy and mechanism of broadly neutralizing antibody protection against HIV acquisition.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Disease Models, Animal , HIV Antibodies/administration & dosage , HIV Infections/prevention & control , Immunization, Passive/methods , Animals , Dose-Response Relationship, Immunologic , Female , Mice , Mice, SCID , Treatment Outcome
10.
AIDS ; 30(10): 1543-51, 2016 06 19.
Article in English | MEDLINE | ID: mdl-27243773

ABSTRACT

OBJECTIVE: Passive administration of broadly neutralizing antibodies has been shown to protect against both vaginal and rectal challenge in the simian/human immunodeficiency virus (SHIV)/macaque model of HIV transmission. However, the relative efficacy of antibody against the two modes of exposure is unknown and, given differences in the composition and immunology of the two tissue compartments, this is an important gap in knowledge. To investigate the significance of the challenge route for antibody-mediated protection, we performed a comparative protection study in macaques using the highly potent human monoclonal antibody, PGT126. DESIGN: Animals were administered PGT126 at three different doses before challenged either vaginally or rectally with a single dose of SHIVSF163P3. METHODS: Viral loads, PGT126 serum concentrations, and serum neutralizing titers were monitored. RESULTS: In vaginally challenged animals, sterilizing immunity was achieved in all animals administered 10 mg/kg, in two of five animals administered 2 mg/kg and in one of five animals administered 0.4 mg/kg PGT126. Comparable protection was observed for the corresponding groups challenged rectally as sterilizing immunity was achieved in three of four animals administered 10 mg/kg, in two of four animals administered 2 mg/kg and in none of four animals administered 0.4 mg/kg PGT126. Serological analysis showed similar serum concentrations of PGT126 and serum neutralization titers in animals administered the same antibody dose. CONCLUSION: Our data suggest that broadly neutralizing antibody-mediated protection is not strongly dependent on the mucosal route of challenge, which indicates that a vaccine aimed to induce a neutralizing antibody response would have broadly similar efficacy against both primary transmission routes for HIV.


Subject(s)
Antibodies, Neutralizing/administration & dosage , HIV Antibodies/administration & dosage , HIV Infections/prevention & control , HIV/immunology , Rectum/immunology , Vagina/immunology , Animals , Disease Models, Animal , Female , Macaca , Treatment Outcome , Viral Load
11.
J Virol ; 90(13): 6127-6139, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27122574

ABSTRACT

UNLABELLED: Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. IMPORTANCE: This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibody Specificity , Binding Sites, Antibody , HEK293 Cells , HIV Infections/prevention & control , HIV Infections/therapy , HIV Infections/virology , HIV-1/isolation & purification , Humans , Macaca mulatta , Neutralization Tests , Simian Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
12.
Science ; 349(6244): aac4223, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26089353

ABSTRACT

A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/prevention & control , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Cross Reactions , Epitopes/immunology , Humans , Macaca , Protein Engineering , Protein Multimerization , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
13.
Cell Host Microbe ; 16(3): 412-8, 2014 09 10.
Article in English | MEDLINE | ID: mdl-25211081

ABSTRACT

Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge.


Subject(s)
HIV Infections/virology , HIV-1/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Animals , Antibodies, Neutralizing/immunology , Disease Models, Animal , Gene Expression , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/transmission , HIV-1/metabolism , Humans , Macaca , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/metabolism , Simian Immunodeficiency Virus/pathogenicity , Virus Cultivation , env Gene Products, Human Immunodeficiency Virus/metabolism
14.
J Exp Med ; 211(10): 2061-74, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25155019

ABSTRACT

It is widely appreciated that effective human vaccines directed against viral pathogens elicit neutralizing antibodies (NAbs). The passive transfer of anti-HIV-1 NAbs conferring sterilizing immunity to macaques has been used to determine the plasma neutralization titers, which must be present at the time of exposure, to prevent acquisition of SIV/HIV chimeric virus (SHIV) infections. We administered five recently isolated potent and broadly acting anti-HIV neutralizing monoclonal antibodies (mAbs) to rhesus macaques and challenged them intrarectally 24 h later with either of two different R5-tropic SHIVs. By combining the results obtained from 60 challenged animals, we determined that the protective neutralization titer in plasma preventing virus infection in 50% of the exposed monkeys was relatively modest (∼1:100) and potentially achievable by vaccination.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV/immunology , Lentivirus Infections/prevention & control , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , DNA Primers/genetics , HIV Antibodies/administration & dosage , Humans , Macaca mulatta , Mutagenesis , Neutralization Tests , Regression Analysis , Vaccination/methods
15.
Proc Natl Acad Sci U S A ; 111(17): 6425-30, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24733916

ABSTRACT

Tetherin is an IFN-inducible transmembrane protein that inhibits the detachment of enveloped viruses from infected cells. HIV-1 overcomes this restriction factor by expressing HIV-1 viral protein U (Vpu), which down-regulates and degrades tetherin. We report that mutations in Vpu that impair tetherin antagonism increase the susceptibility of HIV-infected cells to antibody-dependent cell-mediated cytotoxicity (ADCC), and conversely that RNAi knockdown of tetherin, but not other cellular proteins down-modulated by Vpu, decreases the susceptibility of HIV-infected cells to ADCC. These results reveal that Vpu protects HIV-infected cells from ADCC as a function of its ability to counteract tetherin. By serving as link between innate and adaptive immunity, the antiviral activity of tetherin may be augmented by virus-specific antibodies, and hence much greater than previously appreciated.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Cytoprotection , HIV Infections/immunology , HIV Infections/pathology , Human Immunodeficiency Virus Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Amino Acid Substitution , Antibody-Dependent Cell Cytotoxicity/drug effects , Antigens, CD/metabolism , CD4 Antigens/metabolism , Cytoprotection/drug effects , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Gene Deletion , Humans , Interferon-alpha/pharmacology , RNA Interference/drug effects , Receptors, Cell Surface/metabolism , Signaling Lymphocytic Activation Molecule Family Member 1
16.
J Virol ; 88(11): 6031-46, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24623433

ABSTRACT

UNLABELLED: The type I interferon-inducible factor tetherin retains virus particles on the surfaces of cells infected with vpu-deficient human immunodeficiency virus type 1 (HIV-1). While this mechanism inhibits cell-free viral spread, the immunological implications of tethered virus have not been investigated. We found that surface tetherin expression increased the antibody opsonization of vpu-deficient HIV-infected cells. The absence of Vpu also stimulated NK cell-activating FcγRIIIa signaling and enhanced NK cell degranulation and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). The deletion of vpu in HIV-1-infected primary CD4(+) T cells enhanced the levels of antibody binding and Fc receptor signaling mediated by HIV-positive-patient-derived antibodies. The magnitudes of antibody binding and Fc signaling were both highly correlated to the levels of tetherin on the surfaces of infected primary CD4 T cells. The affinity of antibody binding to FcγRIIIa was also found to be critical in mediating efficient Fc activation. These studies implicate Vpu antagonism of tetherin as an ADCC evasion mechanism that prevents antibody-mediated clearance of virally infected cells. IMPORTANCE: The ability of the HIV-1 accessory factor to antagonize tetherin has been considered to primarily function by limiting the spread of virus by preventing the release of cell-free virus. This study supports the hypothesis that a major function of Vpu is to decrease the recognition of infected cells by anti-HIV antibodies at the cell surface, thereby reducing recognition by antibody-dependent clearance by natural killer cells.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Antigens, CD/immunology , Human Immunodeficiency Virus Proteins/immunology , Killer Cells, Natural/immunology , Receptors, IgG/immunology , Signal Transduction/immunology , Viral Regulatory and Accessory Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Flow Cytometry , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/immunology , Humans , Jurkat Cells , Lysosomal-Associated Membrane Protein 1/immunology , Opsonin Proteins/immunology , Receptors, IgG/metabolism
17.
Chem Biol ; 21(2): 274-83, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24440080

ABSTRACT

One of the most important phenotypes in biology is cell death. One way to probe the mechanism(s) of cell death is to select molecules that prevent it and learn how this was accomplished. Here, intracellular combinatorial antibody libraries were used to select antibodies that protected cells from killing by rhinovirus infection. These rare antibodies functioned by inhibiting the virus-encoded protease that is necessary for viral maturation. Snapshots of the selection process after each round could be obtained by deep sequencing the ever-enriching populations. This detailed analysis of the enrichment process allowed an interesting look at a "test tube" selection process that pitted two replicating systems against each other. Thus, initially a minority of cells containing protective antibodies must compete against a majority of unprotected cells that continue to produce large amounts of virus.


Subject(s)
Antibodies/immunology , Peptide Library , Amino Acid Sequence , Apoptosis , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/metabolism , HeLa Cells , Humans , Molecular Sequence Data , Peptide Hydrolases/metabolism , Phenotype , Rhinovirus/enzymology , Rhinovirus/metabolism , Viral Proteins/metabolism
18.
Nucleic Acids Res ; 42(4): e28, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24270790

ABSTRACT

DNA transposon-based vectors have emerged as gene vehicles with a wide biomedical and therapeutic potential. So far, genomic insertion of such vectors has relied on the co-delivery of genetic material encoding the gene-inserting transposase protein, raising concerns related to persistent expression, insertional mutagenesis and cytotoxicity. This report describes potent DNA transposition achieved by direct delivery of transposase protein. By adapting integrase-deficient lentiviral particles (LPs) as carriers of the hyperactive piggyBac transposase protein (hyPBase), we demonstrate rates of DNA transposition that are comparable with the efficiency of a conventional plasmid-based strategy. Embedded in the Gag polypeptide, hyPBase is robustly incorporated into LPs and liberated from the viral proteins by the viral protease during particle maturation. We demonstrate lentiviral co-delivery of the transposase protein and vector RNA carrying the transposon sequence, allowing robust DNA transposition in a variety of cell types. Importantly, this novel delivery method facilitates a balanced cellular uptake of hyPBase, as shown by confocal microscopy, and allows high-efficiency production of clones harboring a single transposon insertion. Our findings establish engineered LPs as a new tool for transposase delivery. We believe that protein transduction methods will increase applicability and safety of DNA transposon-based vector technologies.


Subject(s)
Gene Products, gag/genetics , Genetic Vectors , Lentivirus/genetics , Transposases/metabolism , Animals , Cell Line , Cells, Cultured , Humans , Protein Precursors/genetics , Proteins/genetics , Proteins/metabolism , Transposases/genetics , Virion/genetics , Virion/metabolism
19.
Methods ; 65(1): 127-32, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23811333

ABSTRACT

The mucosal epithelia together with adaptive immune responses, such as local production and secretion of dimeric and polymeric immunoglobulin A (IgA), are a crucial part of the first line of defense against invading pathogens. IgA is primarily secreted as SIgA and plays multiple roles in mucosal defense. The study of SIgA-mediated protection is an important area of research in mucosal immunity but an easy, fast and reproducible method to generate pathogen-specific SIgA in vitro has not been available. We report here a new method to produce SIgA by co-purification of dimeric IgA, containing J chain, and recombinant human SC expressed in CHO cells. We previously reported the generation, production and characterization of the human recombinant monoclonal antibody IgA2 b12. This antibody, derived from the variable regions of the neutralizing anti-HIV-1 mAb IgG1 b12, blocked viral attachment and uptake by epithelial cells in vitro. We used a cloned CHO cell line that expresses monomeric, dimeric and polymeric species of IgA2 b12 for large-scale production of dIgA2 b12. Subsequently, we generated a CHO cell line to express recombinant human secretory component (rhSC). Here, we combined dIgA2 b12 and CHO-expressed rhSC via column chromatography to produce SIgA2 b12 that remains fully intact upon elution with 0.1M citric acid, pH 3.0. We have performed biochemical analysis of the synthesized SIgA to confirm the species is of the expected size and retains the functional properties previously described for IgA2 b12. We show that SIgA2 b12 binds to the HIV-1 gp120 glycoprotein with similar apparent affinity to that of monomeric and dimeric forms of IgA2 b12 and neutralizes HIV-1 isolates with similar potency. An average yield of 6 mg of SIgA2 b12 was achieved from the combination of 20mg of purified dIgA2 b12 and 2L of rhSC-containing CHO cell supernatant. We conclude that synthesized production of stable SIgA can be generated by co-purification. This process introduces a simplified means of generating a variety of pathogen-specific SIgA antibodies for research and clinical applications.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Immunoglobulin A, Secretory/biosynthesis , Animals , Antibodies, Neutralizing/isolation & purification , CHO Cells , Chromatography, Affinity , Cricetinae , Cricetulus , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Humans , Immunoglobulin A, Secretory/isolation & purification , Protein Binding , Protein Engineering , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...