ABSTRACT
Pectobacterium brasiliense (Pbr) 1692 is an aggressive phytopathogen affecting a broad host range of crops and ornamental plants, including potatoes. Previous research on animal pathogens, and a few plant pathogens, revealed that Outer Membrane Vesicles (OMVs) are part of Gram-negative bacteria's (GNB) adaptive toolkit. For this reason, OMV production and subsequent release from bacteria is a conserved process. Therefore, we hypothesized that OMVs might transport proteins that play a critical role in causing soft rot disease and in the survival and fitness of Pbr1692. Here, we show that the potato pathogen, Pbr1692, releases OMVs of various morphologies in Luria Bertani media at 31 °C. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed the production of OMVs by Pbr1692 cells. Transmission Electron Microscopy showed that these exist as chain-, single-, and double-membrane morphologies. Mass spectrometry followed by Gene Ontology, Clusters of Orthologous Groups, Virulence Factor, CAZymes, Antibiotic Resistance Ontology, and Bastion6 T6SE annotations identified 129 OMV-associated proteins with diverse annotated roles, including antibiotic stress response, virulence, and competition. Pbr1692 OMVs contributed to virulence in potato tubers and elicited a hypersensitive response in Nicotiana benthamiana leaves. Furthermore, Pbr1692 OMVs demonstrated antibacterial activity against Dickeya dadantii.
ABSTRACT
In this study, we examine the impact of transcriptional network rearrangements driven by horizontal gene acquisition in PhoP and SlyA regulons using as a case study a phytopathosystem comprised of potato tubers and the soft-rot pathogen Pectobacterium brasiliense 1692 (Pb1692). Genome simulations and statistical analyses uncovered the tendency of PhoP and SlyA networks to mobilize lineage-specific traits predicted as horizontal gene transfer at late infection, highlighting the prominence of regulatory network rearrangements in this stage of infection. The evidence further supports the circumscription of two horizontally acquired quorum-sensing regulators (carR and expR1) by the PhoP network. By recruiting carR and expR1, the PhoP network also impacts certain host adaptation- and bacterial competition-related systems, seemingly in a quorum sensing-dependent manner, such as the type VI secretion system, carbapenem biosynthesis, and plant cell wall-degrading enzymes (PCWDE) like cellulases and pectate lyases. Conversely, polygalacturonases and the type III secretion system (T3SS) exhibit a transcriptional pattern that suggests quorum-sensing-independent regulation by the PhoP network. This includes an uncharacterized novel phage-related gene family within the T3SS gene cluster that has been recently acquired by two Pectobacterium species. The evidence further suggests a PhoP-dependent regulation of carbapenem- and PCWDE-encoding genes based on the synthesized products' optimum pH. The PhoP network also controls slyA expression in planta, which seems to impact carbohydrate metabolism regulation, especially at early infection, when 76.2% of the SlyA-regulated genes from that category also require PhoP to achieve normal expression levels.IMPORTANCE Exchanging genetic material through horizontal transfer is a critical mechanism that drives bacteria to efficiently adapt to host defenses. In this report, we demonstrate that a specific plant-pathogenic species (from the Pectobacterium genus) successfully integrated a population density-based behavior system (quorum sensing) acquired through horizontal transfer into a resident stress-response gene regulatory network controlled by the PhoP protein. Evidence found here underscores that subsets of bacterial weaponry critical for colonization, typically known to respond to quorum sensing, are also controlled by PhoP. Some of these traits include different types of enzymes that can efficiently break down plant cell walls depending on the environmental acidity level. Thus, we hypothesize that PhoP's ability to elicit regulatory responses based on acidity and nutrient availability fluctuations has strongly impacted the fixation of its regulatory connection with quorum sensing. In addition, another global gene regulator, known as SlyA, was found under the PhoP regulatory network. The SlyA regulator controls a series of carbohydrate metabolism-related traits, which also seem to be regulated by PhoP. By centralizing quorum sensing and slyA under PhoP scrutiny, Pectobacterium cells added an advantageous layer of control over those two networks that potentially enhances colonization efficiency.
ABSTRACT
The complexity of plant microbial communities provides a rich model for investigating biochemical and regulatory strategies involved in interbacterial competition. Within these niches, the soft rot Enterobacteriaceae (SRE) represents an emerging group of plant-pathogens causing soft rot/blackleg diseases resulting in economic losses worldwide in a variety of crops. A preliminary screening using next-generation sequencing of 16S rRNA comparatively analyzing healthy and diseased potato tubers, identified several taxa from Proteobacteria to Firmicutes as potential potato endophytes/plant pathogens. Subsequent to this, a range of molecular and computational techniques were used to determine the contribution of antimicrobial factors such as bacteriocins, carbapenem and type VI secretion system (T6SS), found in an aggressive SRE (Pectobacterium carotovorum subsp. brasiliense strain PBR1692 - Pcb1692) against these endophytes/plant pathogens. The results showed growth inhibition of several Proteobacteria by Pcb1692 depends either on carbapenem or pyocin production. Whereas for targeted Firmicutes, only the Pcb1692 pyocin seems to play a role in growth inhibition. Furthermore, production of carbapenem by Pcb1692 was observably dependent on the presence of environmental iron and oxygen. Additionally, upon deletion of fur, slyA and expI regulators, carbapenem production ceased, implying a complex regulatory mechanism involving these three genes. Finally, the results demonstrated that although T6SS confers no relevant advantage during in vitro competition, a significant attenuation in competition by the mutant strain lacking a functional T6SS was observed in planta. IMPORTANCE: Soft rot Enterobacteriaceae (SRE) represents important phytopathogens causing soft rot/blackleg diseases in a variety of crops leading to huge economic losses worldwide. These pathogens have been isolated alongside other bacteria from different environments such as potato tubers, stems, roots and from the soil. In these environments, SREs coexist with other bacteria where they have to compete for scarce nutrients and other resources. In this report, we show that Pectobacterium carotovorum subsp. brasiliense strain PBR1692 - Pcb1692, which represents one of the SREs, inhibits growth of several different bacteria by producing different antimicrobial compounds. These antimicrobial compounds can be secreted inside or outside the plant host, allowing Pcb1692 to effectively colonize different types of ecological niches. By analyzing the genome sequences of several SREs, we show that other SREs likely deploy similar antimicrobials to target other bacteria.
ABSTRACT
Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria, including phytopathogens. However, to date, the role played by Fur in the biology of Pectobacterium carotovorum subsp. brasiliense (Pcb1692), an important pathogen of potatoes, has not yet been studied. To this end, we used the lambda recombineering method to generate a fur mutant strain of Pcb1692 and assessed the virulence and fitness of the mutant strain. The results showed that production of siderophores in Pcb1692Δfur increased compared to the Pcb1692 wild-type and the complemented strain Pcb1692Δfur-pfur. However, production of N-acyl homoserine lactone (AHLs), biofilm formation, exopolysaccharide (EPS) production, virulence on potato tubers and swimming motility, were all significantly decreased in Pcb1692Δfur compared to the wild-type and complemented Pcb1692Δfur-pfur strains. The Pcb1692Δfur mutant also demonstrated significant sensitivity to oxidative stress when exposed to H2O2. Consistent with phenotypic results, qRT-PCR results demonstrated that Fur down-regulates genes which encode proteins associated with: iron uptake (HasA-extracellular heme-binding protein and Ferrodoxin-AED-0004132), stress response (SodC-superoxide dismutase), plant cell wall degrading enzymes (PrtA and CelV) and motility (FlhC and MotA). We conclude that the ferric uptake regulator protein (Fur) of Pcb1692 regulates traits that are important to host-pathogens interactions.
Subject(s)
Bacterial Proteins/metabolism , Pectobacterium carotovorum/genetics , Pectobacterium carotovorum/pathogenicity , Repressor Proteins/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Down-Regulation , Host-Pathogen Interactions , Hydrogen Peroxide/toxicity , Iron/metabolism , Mutagenesis , Oxidative Stress/drug effects , Pectobacterium carotovorum/metabolism , Repressor Proteins/genetics , Siderophores/metabolism , Solanum tuberosum/microbiology , Superoxide Dismutase/metabolism , Virulence/geneticsABSTRACT
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain.