Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35723246

ABSTRACT

This study evaluated the influence of feeding low and high preweaning allowances of unpasteurized whole milk (MA) on intake, selected blood metabolites, antibody response, mammary gland growth, and growth of New Zealand (NZ) dairy heifers to 7 mo of age. At 10 ± 2 d of age (study day 0), group-housed (six·pen-1) heifer calves (Holstein-Friesian × Jersey) were allocated to low (4 L whole milk·calf-1·d-1; n = 7 pens) or high (8 L whole milk·calf-1·d-1; n = 7 pens) MA for the next 63 d. Calves were gradually weaned between days 63 ± 2 and 73 ± 2. Calves in each pen had ad-libitum access to clean water, pelleted calf starter, and chopped grass hay from day 1 to 91 ± 2 d. At 92 ± 2 d, all calves were transferred to pasture, grazed in a mob, and their growth and selected blood metabolites were measured until day 209. All animals were weighed weekly during the indoor period (to day 91) and then at days 105, 112, 128, 162, 184, and 209. Skeletal growth measurements and blood samples to analyze selected metabolites were collected at the start of the experiment, weaning, and then postweaning on day 91, and day 201. Specific antibodies against Leptospira and Clostridia were quantified in weeks 7, 13, and 27. Mammary glands were scanned using ultrasonography at the start of the experiment, weaning, and day 201. Feeding high vs. low amounts of MA increased the preweaning growth in heifer calves (P = 0.02) without negatively affecting postweaning average daily gain (ADG) (P = 0.74). Compared with heifers fed with low MA, high MA fed heifers had a greater increase in antibodies against Leptospira and Clostridia by 13 wk of age (P = 0.0007 and P = 0.06, respectively). By 27 wk of age, the antibody response was the same in heifers offered low or high MA. There was no effect of MA on the total size of the mammary gland, measured by ultrasonography, at weaning and 7 mo of age. However, the greater MA was associated with more mammary parenchyma (P = 0.01) and less mammary fat pad (P = 0.03) in back glands at 7 mo of age compared with heifers fed lower MA. In conclusion, feeding a high vs. a low amount of unpasteurized whole milk increased the preweaning growth of New Zealand replacement heifers without negatively affecting their ADG during postweaning under grazing conditions. Feeding more (8 vs. 4 L·d-1) unpasteurized whole milk positively affected antibody responses early in life and mammary gland composition by 7 mo of age in dairy heifers reared for pasture-based dairy systems.


This study evaluated the effect of unpasteurized whole milk allowance on intake, antibody response, mammary gland growth, and growth performance of heifers until 7 mo of age. Feeding greater (8 L·d−1) vs. lower (4 L·d−1) milk allowance to heifer calves increased preweaning body weight without having any negative effect on postweaning growth under grazing. Heifers fed high milk allowance had significantly better antibody responses against Leptospira and Clostridia by 3 mo of age and had more mammary parenchyma (potential milk making tissue), and less mammary fat pad (supporting tissue) by 7 mo of age.


Subject(s)
Animal Feed , Milk , Cattle , Animals , Female , Milk/metabolism , Animal Feed/analysis , Antibody Formation , Diet/veterinary , New Zealand , Weaning , Body Weight
2.
Front Plant Sci ; 12: 673774, 2021.
Article in English | MEDLINE | ID: mdl-34177990

ABSTRACT

α-Chaconine is the most abundant glycoalkaloid in potato and toxic to the animal digestive system, but the mechanisms underlying the toxicity are unclear. In this study, mouse small intestinal epithelial cells were incubated with α-chaconine at 0, 0.4, and 0.8 µg/mL for 24, 48, and 72 h to examine apoptosis, mechanical barrier function, and antioxidant ability of the cells using a cell metabolic activity assay, flow cytometry, Western blot, immunofluorescence, and fluorescence quantitative PCR. The results showed that α-chaconine significantly decreased cell proliferation rate, increased apoptosis rate, decreased transepithelial electrical resistance (TEER) value, and increased alkaline phosphatase (AKP) and lactate dehydrogenase (LDH) activities, and there were interactions between α-chaconine concentration and incubation time. α-Chaconine significantly reduced the relative and mRNA expressions of genes coding tight junction proteins zonula occludens-1 (ZO-1) and occludin, increased malondialdehyde (MDA) content, decreased total glutathione (T-GSH) content, reduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and γ-glutamylcysteine synthetase (γ-GCS) and the mRNA expressions of SOD, CAT, GSH-Px, and γ-GCS genes. In conclusion, α-chaconine disrupts the cell cycle, destroys the mechanical barrier and permeability of mucosal epithelium, inhibits cell proliferation, and accelerates cell apoptosis.

3.
Animals (Basel) ; 11(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808896

ABSTRACT

The experiment aimed to examine the impacts of an increased growth rate of ewes between three and seven months of age on udder development using ultrasound and to establish whether ultrasonography could be used to identify ewe mammary structures that may be indirect indicators of singleton growth to weaning. Udder dimensions, depths of gland cistern (GC), parenchyma (PAR) and fat pad (FP) were measured in late pregnancy (P107), early lactation (L29), and at weaning (L100) in 59 single-bearing yearling ewes selected from two treatments. The 'heavy' group (n = 31) was preferentially fed prior to breeding achieving an average breeding live-weight of 47.9 ± 0.38 kg at seven months of age. The 'control' group (n = 28) had an average breeding live-weight of 44.9 ± 0.49 kg. Udder dimensions, GC, PAR and FP did not differ between treatments. Lamb growth to L100 was positively associated (p < 0.05) with PAR at P107 and GC at L29. There was no evidence of negative effects of the live-weight gain treatments on udder development of yearling ewes as measured by ultrasonography. The results suggest that this ultrasound method has the potential to identify pregnant yearling ewes which would wean heavier singletons.

4.
J Mammary Gland Biol Neoplasia ; 15(1): 101-12, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20131087

ABSTRACT

It is well established that milk production of the dairy cow is a function of mammary epithelial cell (MEC) number and activity and that these factors can be influenced by diverse environmental influences and management practises (nutrition, milk frequency, photoperiod, udder health, hormonal and local effectors). Thus, understanding how the mammary gland is able to respond to these environmental cues provides a huge potential to enhance milk production of the dairy cow. In recent years our understanding of molecular events within the MEC underlying bovine lactation has been advanced through mammary microarray studies and will be further advanced through the recent availability of the bovine genome sequence. In addition, the potential of epigenetic regulation (non-sequence inheritable chemical changes in chromatin, such as DNA methylation and histone modifications, which affect gene expression) to manipulate mammary function is emerging. We propose that a substantial proportion of unexplained phenotypic variation in the dairy cow is due to epigenetic regulation. Heritability of epigenetic marks also highlights the potential to modify lactation performance of offspring. Understanding the response of the MEC (cell signaling pathways and epigenetic mechanisms) to external stimuli will be an important prerequisite to devising new technologies for maximising their activity and, hence, milk production in the dairy cow.


Subject(s)
Cattle/physiology , Epigenesis, Genetic , Epithelial Cells/physiology , Lactation/physiology , Mammary Glands, Animal/physiology , Milk Proteins/metabolism , Milk/metabolism , Animals , DNA Methylation , Dairying/methods , Epithelial Cells/metabolism , Female , Gene Expression Regulation , Genotype , Histones/metabolism , Lactation/genetics , Mammary Glands, Animal/metabolism , Milk Proteins/genetics , Phenotype
5.
Genome Biol ; 10(4): R43, 2009.
Article in English | MEDLINE | ID: mdl-19393040

ABSTRACT

BACKGROUND: The newly assembled Bos taurus genome sequence enables the linkage of bovine milk and lactation data with other mammalian genomes. RESULTS: Using publicly available milk proteome data and mammary expressed sequence tags, 197 milk protein genes and over 6,000 mammary genes were identified in the bovine genome. Intersection of these genes with 238 milk production quantitative trait loci curated from the literature decreased the search space for milk trait effectors by more than an order of magnitude. Genome location analysis revealed a tendency for milk protein genes to be clustered with other mammary genes. Using the genomes of a monotreme (platypus), a marsupial (opossum), and five placental mammals (bovine, human, dog, mice, rat), gene loss and duplication, phylogeny, sequence conservation, and evolution were examined. Compared with other genes in the bovine genome, milk and mammary genes are: more likely to be present in all mammals; more likely to be duplicated in therians; more highly conserved across Mammalia; and evolving more slowly along the bovine lineage. The most divergent proteins in milk were associated with nutritional and immunological components of milk, whereas highly conserved proteins were associated with secretory processes. CONCLUSIONS: Although both copy number and sequence variation contribute to the diversity of milk protein composition across species, our results suggest that this diversity is primarily due to other mechanisms. Our findings support the essentiality of milk to the survival of mammalian neonates and the establishment of milk secretory mechanisms more than 160 million years ago.


Subject(s)
Cattle/genetics , Genome/genetics , Lactation/genetics , Milk Proteins/genetics , Animals , Chromosome Mapping , Chromosomes, Mammalian/genetics , Computational Biology/methods , Databases, Genetic , Evolution, Molecular , Female , Humans , Mammals/classification , Mammals/genetics , Mammary Glands, Animal/metabolism , Milk/chemistry , Milk Proteins/classification , Phylogeny , Quantitative Trait Loci/genetics
6.
Biomarkers ; 14(1): 26-37, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19283521

ABSTRACT

The serum amyloid A protein is one of the major reactants in the acute-phase response. Using representational difference analysis comparing RNA from normal and involuting quarters of a dairy cow mammary gland, we found an mRNA encoding the SAA3 protein (M-SAA3). The M-SAA3 mRNA was localized to restricted populations of bovine mammary epithelial cells (MECs). It was expressed at a moderate level in late pregnancy, at a low level through lactation, was induced early in milk stasis, and expressed at high levels in most MECs during mid to late involution and inflammation/mastitis. The mature M-SAA3 peptide was expressed in Escherichia coli, antibodies made, and shown to have antibacterial activity against E. coli, Streptococcus uberis and Pseudomonas aeruginosa. These results suggest that the mammary SAA3 may have a role in protection of the mammary gland during remodelling and infection and possibly in the neonate gastrointestinal tract.


Subject(s)
Mammary Glands, Animal/metabolism , Serum Amyloid A Protein/metabolism , Animals , Base Sequence , Blotting, Northern , Blotting, Western , Cattle , DNA Primers , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , RNA, Messenger/genetics , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/immunology
7.
Genetics ; 160(4): 1587-97, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11973312

ABSTRACT

Comparative maps between ruminant species and humans are increasingly important tools for the discovery of genes underlying economically important traits. In this article we present a primary linkage map of the deer genome derived from an interspecies hybrid between red deer (Cervus elaphus) and Père David's deer (Elaphurus davidianus). The map is approximately 2500 cM long and contains >600 markers including both evolutionary conserved type I markers and highly polymorphic type II markers (microsatellites). Comparative mapping by annotation and sequence similarity (COMPASS) was demonstrated to be a useful tool for mapping bovine and ovine ESTs in deer. Using marker order as a phylogenetic character and comparative map information from human, mouse, deer, cattle, and sheep, we reconstructed the karyotype of the ancestral Pecoran mammal and identified the chromosome rearrangements that have occurred in the sheep, cattle, and deer lineages. The deer map and interspecies hybrid pedigrees described here are a valuable resource for (1) predicting the location of orthologs to human genes in ruminants, (2) mapping QTL in farmed and wild deer populations, and (3) ruminant phylogenetic studies.


Subject(s)
Chromosome Mapping , Deer/genetics , Evolution, Molecular , Genome , Animals , Cattle , Expressed Sequence Tags , Humans , Microsatellite Repeats , Ruminants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...