Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 7: 48, 2020.
Article in English | MEDLINE | ID: mdl-32296712

ABSTRACT

As human Tau undergoes pathologically relevant post-translational modifications when expressed in yeast, the use of humanized yeast models for the generation of novel Tau monoclonal antibodies has previously been proven to be successful. In this study, human Tau2N4R-ΔK280 purified from yeast was used for the immunization of mice and subsequent selection of high affinity Tau-specific monoclonal antibodies. The characterization of four novel antibodies in different Tau model systems yielded a phosphorylation-dependent antibody (15A10), an antibody directed to the first microtubule-binding repeat domain (16B12), a carboxy-terminal antibody (20G10) and an antibody targeting an epitope on the hinge of the first and second amino-terminal insert (18F12). The latter was found to be conformation-dependent, suggesting structural differences between the Tau splicing isoforms and allowing insight in the roles played by the amino-terminal inserts. As this monoclonal antibody also has the capacity to detect tangle-like structures in different transgenic Tau mice and neurofibrillary tangles in brain sections of patients diagnosed with Alzheimer's disease, we also tested the diagnostic potential of 18F12 in a pilot study and found this monoclonal antibody to have the ability to discriminate Alzheimer's disease patients from control individuals based on increased Tau levels in the cerebrospinal fluid.

2.
Mech Ageing Dev ; 161(Pt B): 288-305, 2017 01.
Article in English | MEDLINE | ID: mdl-27181083

ABSTRACT

Neurodegenerative disorders have a profound effect on the quality of life of patients and their environment. However, the development of adequate therapies requires accurate understanding of the underlying disease pathogenesis. On that account, yeast models can play an important role, as they enable the elucidation of the mechanisms leading to neurodegenerative disorders. Furthermore, by using so-called humanized yeast systems, the findings in yeast can be interpolated to humans. In this review, we will give an overview of the current body of knowledge on the use of yeast models with regard to Huntington's, Parkinson's and Alzheimer's disease. In addition to the results, obtained with the baker's yeast Saccharomyces cerevisiae, we also consider the existing literature on the less common but promising fission yeast Schizosaccharomyces pombe.


Subject(s)
Models, Biological , Neurodegenerative Diseases , Saccharomyces cerevisiae , Schizosaccharomyces , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...