Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(10): 7168-7179, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33900072

ABSTRACT

In this study, we report the synthesis and characterization of [Fe(T1Et4iPrIP)(2-OH-AP)(OTf)](OTf) (2), [Fe(T1Et4iPrIP)(2-O-AP)](OTf) (3), and [Fe(T1Et4iPrIP)(DMF)3](OTf)3 (4) (T1Et4iPrIP = tris(1-ethyl-4-isopropyl-imidazolyl)phosphine; 2-OH-AP = 2-hydroxyacetophenone, and 2-O-AP- = monodeprotonated 2-hydroxyacetophenone). Both 2 and 3 serve as model complexes for the enzyme-substrate adduct for the nonheme enzyme 2,4'-dihydroacetophenone (DHAP) dioxygenase or DAD, while 4 serves as a model for the ferric form of DAD. Complexes 2-4 have been characterized by X-ray crystallography which reveals T1Et4iPrIP to bind iron in a tridentate fashion. Complex 2 additionally contains a bidentate 2-OH-AP ligand and a monodentate triflate ligand yielding distorted octahedral geometry, while 3 possesses a bidentate 2-O-AP- ligand and exhibits distorted trigonal bipyramidal geometry (τ = 0.56). Complex 4 displays distorted octahedral geometry with 3 DMF ligands completing the ligand set. The UV-vis spectrum of 2 matches more closely to the DAD-substrate spectrum than 3, and therefore, it is believed that the substrate for DAD is bound in the protonated form. TD-DFT studies indicate that visible absorption bands for 2 and 3 are due to MLCT bands. Complexes 2 and 3 are capable of oxidizing the coordinated substrate mimics in a stoichiometric and catalytic fashion in the presence of O2. Complex 4 does not convert 2-OH-AP to products under the same catalytic conditions; however, it becomes anaerobically reduced in the presence of 2 equiv 2-OH-AP to 2.


Subject(s)
Biomimetic Materials/metabolism , Dioxygenases/metabolism , Iron Compounds/metabolism , Alcaligenes/enzymology , Biomimetic Materials/chemistry , Density Functional Theory , Dioxygenases/chemistry , Iron Compounds/chemical synthesis , Iron Compounds/chemistry , Models, Molecular , Molecular Structure
2.
ACS Symp Ser Am Chem Soc ; 1317(4): 71-83, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-33967356

ABSTRACT

We report the characterization of [Fe(T1Et4iPrIP)(sal)] (2) (T1Et4iPrIP = tris(1-ethyl-4-isopropyl-imidazolyl)phosphine; sal2- = salicylate dianion), which serves as a model for substrate-bound salicylate dioxygenase (SDO). Complex 2 crystallizes in the monoclinic space group P21/n with a = 10.7853(12) Å, b = 16.5060(19) Å, c = 21.217(2) Å, ß = 94.489(2)°, and V = 3765.5(7) Å3. The structure consists of FeII bonded in distorted square pyramidal geometry (τ = 0.32) with two salicylate oxygens and two T1Et4iPrIP nitrogens serving as the base and the apical position occupied by the other ligand nitrogen. [Fe(T1Et4iPrIP)(OTf)2] (1), the precursor for 2, catalyzes the cleavage of 1,4-dihydroxy-2-naphthoate in the presence of O2. Complex 1 is also capable of cleaving the salicylate aromatic ring in the presence of H2O2. The progression of this reaction toward product formation involves an FeIII-phenoxide species.

3.
Inorganica Chim Acta ; 464: 152-156, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29238096

ABSTRACT

A new iron(II) complex has been prepared and characterized. [Fe(TrImA)2(OTf)2] (1, TrImA = 1-Tritylimidazole-4-carboxaldehyde). The solid state structure of 1 has been determined by X-ray crystallography. Compound 1 crystallizes in monoclinic space group P21/c, with a = 10.8323(18) Å, b = 8.1606(13) Å and c = 24.818(4) Å. The iron center is coordinated to two imidazole groups, two pendant aldehyde-derived carbonyl oxygens and two triflate oxygens. The complex is high spin between 300 and 20 K as indicated by variable field variable temperature magnetic measurements. A fit of the magnetic data yielded g = 2.17 and D = 4.05 cm-1. A large HOMO-LUMO gap energy (4.49 eV) exists for 1 indicating high stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...