Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067351

ABSTRACT

High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.

2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958512

ABSTRACT

Despite the ongoing progress in diagnosis and treatments, cancer remains a threat to more than one-third of the human population. The emerging data indicate that many Krüppel-associated box zinc finger proteins (KRAB-ZNF) belonging to a large gene family may be involved in carcinogenesis. Our previous study identified Zinc Finger Protein 714 (ZNF714), a KRAB-ZNF gene of unknown function, as being commonly overexpressed in many tumors, pointing to its hypothetical oncogenic role. Here, we harnessed The Cancer Genome Atlas (TCGA)-centered databases and performed functional studies with transcriptomic and methylomic profiling to explore ZNF714 function in cancer. Our pan-cancer analyses confirmed frequent ZNF714 overexpression in multiple tumors, possibly due to regional amplification, promoter hypomethylation, and Nuclear Transcription Factor Y Subunit Beta (NFYB) signaling. We also showed that ZNF714 expression correlates with tumor immunosuppressive features. The in vitro studies indicated that ZNF714 expression positively associates with proliferation, migration, and invasion. The transcriptomic analysis of ZNF714 knocked-down cells demonstrated deregulation of cell adhesion, migration, proliferation, apoptosis, and differentiation. Importantly, we provided evidence that ZNF714 negatively regulates the expression of several known TSGs indirectly via promoter methylation. However, as ZNF714 did not show nuclear localization in our research model, the regulatory mechanisms exerted by ZNF714 require further investigation. In conclusion, our results reveal, for the first time, that ZNF714 may support pro-oncogenic features in lung cancer cells.


Subject(s)
DNA-Binding Proteins , Lung Neoplasms , Transcription Factors , Humans , Gene Expression Profiling , Lung Neoplasms/genetics , Repressor Proteins/genetics , Transcriptome , Zinc Fingers , DNA-Binding Proteins/genetics , Transcription Factors/genetics
3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003570

ABSTRACT

The global cancer burden remains high; thus, a better understanding of the molecular mechanisms driving carcinogenesis is needed to improve current prevention and treatment options. We previously detected the ZNF643/ZFP69B gene upregulated in multiple tumors, and we speculated it may play a role in tumor biology. To test this hypothesis, we employed TCGA-centered databases to correlate ZNF643 status with various clinicopathological parameters. We also performed RNA-seq analysis and in vitro studies assessing cancer cell phenotypes, and we searched for ZNF643-bound genomic loci. Our data indicated higher levels of ZNF643 in most analyzed tumors compared to normal samples, possibly due to copy number variations. ZNF643 mRNA correlated with diverse molecular and immune subtypes and clinicopathological features (tumor stage, grade, patient survival). RNA-seq analysis revealed that ZNF643 silencing triggers the deregulation of the genes implicated in various cancer-related processes, such as growth, adhesion, and immune system. Moreover, we observed that ZNF643 positively influences cell cycle, migration, and invasion. Finally, our ChIP-seq analysis indicated that the genes associated with ZNF643 binding are linked to adhesion and immune signaling. In conclusion, our data confirm the oncogenic properties of ZNF643 and pinpoint its impact on cell adhesion and immune processes.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Cell Adhesion/genetics , Neoplasms/genetics , Carcinogenesis/genetics , Immunity , Gene Expression Regulation, Neoplastic
4.
Curr Oncol ; 29(12): 9896-9915, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36547193

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is one of the ten most common cancers. Most cancer cases originate from alcohol and tobacco consumption. However, studies have demonstrated that human papillomavirus (HPV) infection, particularly HPV-16, may also significantly influence disease progression. The KRAB-ZNF family of genes is involved in epigenetic suppression, and its involvement in carcinogenesis is the subject of extensive studies. The available literature data demonstrate that they may play different roles, both as tumor suppressors and oncogenes. In this study, six ZNF genes, ZFP28, ZNF132, ZNF418, ZNF426, ZNF540, and ZNF880, were tested using several in silico approaches based on the TCGA and GEO datasets. Our analyses indicate that the expression of the analyzed ZNFs was significantly downregulated in tumor tissues and depended on tumor localization. The expression levels of ZNFs differed between HPV-positive vs. HPV-negative patients depending on the clinical-pathological parameters. More specifically, the patients with higher levels of ZNF418 and ZNF540 showed better survival rates than those with a lower expression. In addition, the level of ZNF540 expression in HPV-positive (HPV(+)) patients was higher than in HPV-negative (HPV(-)) patients (p < 0.0001) and was associated with better overall survival (OS). In conclusion, we demonstrate that ZNF540 expression highly correlates with HPV infection, which renders ZNF540 a potential biomarker for HNSCC prognosis and treatment.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Biomarkers , Zinc Fingers/genetics
5.
Sci Rep ; 12(1): 13480, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931709

ABSTRACT

Bioengineered MS1 silk is derived from major ampullate spidroin 1 (MaSp1) from the spider Nephila clavipes. The MS1 silk was functionalized with the H2.1 peptide to target Her2-overexpressing cancer cells. The immunogenic potential of drug carriers made from MS1-type silks was investigated. The silk spheres were administered to healthy mice, and then (i) the phenotypes of the immune cells that infiltrated the Matrigel plugs containing spheres (implanted subcutaneously), (ii) the presence of silk-specific antibodies (after two intravenous injections of the spheres), (iii) the splenocyte phenotypes and their activity after restimulation ex vivo in terms of proliferation and cytokine secretion (after single intravenous injection of the spheres) were analyzed. Although the immunogenicity of MS1 particles was minor, the H2.1MS1 spheres attracted higher levels of B lymphocytes, induced a higher anti-silk antibody titer, and, after ex vivo restimulation, caused the activation of splenocytes to proliferate and express more IFN-γ and IL-10 compared with the PBS and MS1 groups. Although the H2.1MS1 spheres triggered a certain degree of an immunological response, multiple injections (up to six times) neither hampered the carrier-dependent specific drug delivery nor induced toxicity, as previously indicated in a mouse breast cancer model. Both findings indicate that a drug delivery system based on MS1-type silk has great potential for the treatment of cancer and other conditions.


Subject(s)
Fibroins , Neoplasms , Spiders , Animals , Biomedical Engineering , Drug Carriers/pharmacology , Drug Delivery Systems , Immunity , Mice , Neoplasms/drug therapy
6.
Int J Mol Sci ; 22(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672287

ABSTRACT

Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting.


Subject(s)
Genes, Tumor Suppressor , Neoplasms/genetics , Oncogenes , Transcription Factors/chemistry , Transcription Factors/genetics , DNA Transposable Elements , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Multigene Family , Neoplasms/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...