Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10975, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744876

ABSTRACT

Common wheat (Triticum aestivum L.) is a major staple food crop, providing a fifth of food calories and proteins to the world's human population. Despite the impressive growth in global wheat production in recent decades, further increases in grain yield are required to meet future demands. Here we estimated genetic gain and genotype stability for grain yield (GY) and determined the trait associations that contributed uniquely or in combination to increased GY, through a retrospective analysis of top-performing genotypes selected from the elite spring wheat yield trial (ESWYT) evaluated internationally during a 14-year period (2003 to 2016). Fifty-six ESWYT genotypes and four checks were sown under optimally irrigated conditions in three phenotyping trials during three consecutive growing seasons (2018-2019 to 2020-2021) at Norman E. Borlaug Research Station, Ciudad Obregon, Mexico. The mean GY rose from 6.75 (24th ESWYT) to 7.87 t ha-1 (37th ESWYT), representing a cumulative increase of 1.12 t ha-1. The annual genetic gain for GY was estimated at 0.96% (65 kg ha-1 year-1) accompanied by a positive trend in genotype stability over time. The GY progress was mainly associated with increases in biomass (BM), grain filling rate (GFR), total radiation use efficiency (RUE_total), grain weight per spike (GWS), and reduction in days to heading (DTH), which together explained 95.5% of the GY variation. Regression lines over the years showed significant increases of 0.015 kg m-2 year-1 (p < 0.01), 0.074 g m-2 year-1 (p < 0.05), and 0.017 g MJ-1 year-1 (p < 0.001) for BM, GFR, and RUE_total, respectively. Grain weight per spike exhibited a positive but no significant trend (0.014 g year-1, p = 0.07), whereas a negative tendency for DTH was observed (- 0.43 days year-1, p < 0.001). Analysis of the top ten highest-yielding genotypes revealed differential GY-associated trait contributions, demonstrating that improved GY can be attained through different mechanisms and indicating that no single trait criterion is adopted by CIMMYT breeders for developing new superior lines. We conclude that CIMMYT's Bread Wheat Breeding Program has continued to deliver adapted and more productive wheat genotypes to National partners worldwide, mainly driven by enhancing RUE_total and GFR and that future yield increases could be achieved by intercrossing genetically diverse top performer genotypes.


Subject(s)
Edible Grain , Genotype , Triticum , Triticum/genetics , Triticum/growth & development , Edible Grain/genetics , Edible Grain/growth & development , Phenotype , Seasons , Mexico
2.
Crop Sci ; 64(1): 314-332, 2024.
Article in English | MEDLINE | ID: mdl-38516200

ABSTRACT

Radiation-use efficiency (RUE) is an important trait for raising biomass and yield potential in plant breeding. However, the effect of the planting system (PS) on genetic variation in RUE has not been previously investigated. Our objectives were to quantify genetic variation in RUE, biomass and grain yield in raised-bed and flat-basin planting systems, and associations with canopy-architecture traits (flag-leaf angle and curvature). Twelve spring wheat (Triticum aestivum L.) cultivars were evaluated under irrigated conditions for 3 years in North West Mexico using raised-bed and flat-basin planting systems. Canopy architecture traits were measured at booting and anthesis + 7 days. Grain yield (10.6%), biomass (7.6%), and pre-grain-filling RUE (9.7%) were higher in raised beds than flat basins, while a significant planting system × genotype interaction was found for grain yield. Genetic variation in pre-grain-filling RUE was associated with biomass and grain yield in beds and basins. In flat basins, higher pre-grain-filling RUE was correlated with a more upright flag-leaf angle but not in raised beds. In raised beds, cultivars with less upright flag-leaf angle had greater fractional light interception pre-anthesis. Taller semi-dwarf cultivars intercepted relatively more radiation in the beds than the flats before anthesis, consistent with the taller cultivars showing relatively greater increases in yield in beds compared to flats. Our results indicated that the evaluation of genotypes for RUE and biomass in wheat breeding should take into account planting systems to capture genotype × PS effects. In addition, the results demonstrate how flag-leaf angle has a different effect depending on the planting system.

3.
New Phytol ; 239(5): 1622-1636, 2023 09.
Article in English | MEDLINE | ID: mdl-37430457

ABSTRACT

Global nocturnal temperatures are rising more rapidly than daytime temperatures and have a large effect on crop productivity. In particular, stomatal conductance at night (gsn ) is surprisingly poorly understood and has not been investigated despite constituting a significant proportion of overall canopy water loss. Here, we present the results of 3 yr of field data using 12 spring Triticum aestivum genotypes which were grown in NW Mexico and subjected to an artificial increase in night-time temperatures of 2°C. Under nocturnal heating, grain yields decreased (1.9% per 1°C) without significant changes in daytime leaf-level physiological responses. Under warmer nights, there were significant differences in the magnitude and decrease in gsn , values of which were between 9 and 33% of daytime rates while respiration appeared to acclimate to higher temperatures. Decreases in grain yield were genotype-specific; genotypes categorised as heat tolerant demonstrated some of the greatest declines in yield in response to warmer nights. We conclude the essential components of nocturnal heat tolerance in wheat are uncoupled from resilience to daytime temperatures, raising fundamental questions for physiological breeding. Furthermore, this study discusses key physiological traits such as pollen viability, root depth and irrigation type may also play a role in genotype-specific nocturnal heat tolerance.


Subject(s)
Edible Grain , Plant Breeding , Edible Grain/genetics , Plant Leaves/physiology , Temperature , Hot Temperature
4.
Commun Biol ; 6(1): 21, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624201

ABSTRACT

Global warming poses a major threat to food security and necessitates the development of crop varieties that are resilient to future climatic instability. By evaluating 149 spring wheat lines in the field under yield potential and heat stressed conditions, we demonstrate how strategic integration of exotic material significantly increases yield under heat stress compared to elite lines, with no significant yield penalty under favourable conditions. Genetic analyses reveal three exotic-derived genetic loci underlying this heat tolerance which together increase yield by over 50% and reduce canopy temperature by approximately 2 °C. We identified an Ae. tauschii introgression underlying the most significant of these associations and extracted the introgressed Ae. tauschii genes, revealing candidates for further dissection. Incorporating these exotic alleles into breeding programmes could serve as a pre-emptive strategy to produce high yielding wheat cultivars that are resilient to the effects of future climatic uncertainty.


Subject(s)
Thermotolerance , Triticum , Triticum/genetics , Quantitative Trait Loci , Thermotolerance/genetics , Alleles , Plant Breeding
5.
Trends Plant Sci ; 28(3): 330-343, 2023 03.
Article in English | MEDLINE | ID: mdl-36494304

ABSTRACT

Awnless and awned wheat is found across the globe. Archeological and historical records show that the wheat spike was predominantly awned across the many millennia following domestication. Thus, ancient farmers did not select against awns at least until the last millennium. Here, we describe the evolution and domestication of wheat awns, quantifying their role in spike photosynthesis and yield under contrasting environments. Awns increase grain weight directly (increasing the size of all grains) or indirectly (increasing the failure of distal grains), but not as a consequence of additional spike photosynthesis. However, a trade-off is produced through decreasing grain number. Thus, favorable effects of awns on yield are not consistently found across environments.


Subject(s)
Edible Grain , Triticum
6.
Front Plant Sci ; 13: 828451, 2022.
Article in English | MEDLINE | ID: mdl-35481146

ABSTRACT

To achieve food security, it is necessary to increase crop radiation use efficiency (RUE) and yield through the enhancement of canopy photosynthesis to increase the availability of assimilates for the grain, but its study in the field is constrained by low throughput and the lack of integrative measurements at canopy level. In this study, partial least squares regression (PLSR) was used with high-throughput phenotyping (HTP) data in spring wheat to build predictive models of photosynthetic, biophysical, and biochemical traits for the top, middle, and bottom layers of wheat canopies. The combined layer model predictions performed better than individual layer predictions with a significance as follows for photosynthesis R 2 = 0.48, RMSE = 5.24 µmol m-2 s-1 and stomatal conductance: R 2 = 0.36, RMSE = 0.14 mol m-2 s-1. The predictions of these traits from PLSR models upscaled to canopy level compared to field observations were statistically significant at initiation of booting (R 2 = 0.3, p < 0.05; R 2 = 0.29, p < 0.05) and at 7 days after anthesis (R 2 = 0.15, p < 0.05; R 2 = 0.65, p < 0.001). Using HTP allowed us to increase phenotyping capacity 30-fold compared to conventional phenotyping methods. This approach can be adapted to screen breeding progeny and genetic resources for RUE and to improve our understanding of wheat physiology by adding different layers of the canopy to physiological modeling.

7.
J Exp Bot ; 73(10): 3221-3237, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35271722

ABSTRACT

Recognition of the untapped potential of photosynthesis to improve crop yields has spurred research to identify targets for breeding. The CO2-fixing enzyme Rubisco is characterized by a number of inefficiencies, and frequently limits carbon assimilation at the top of the canopy, representing a clear target for wheat improvement. Two bread wheat lines with similar genetic backgrounds and contrasting in vivo maximum carboxylation activity of Rubisco per unit leaf nitrogen (Vc,max,25/Narea) determined using high-throughput phenotyping methods were selected for detailed study from a panel of 80 spring wheat lines. Detailed phenotyping of photosynthetic traits in the two lines using glasshouse-grown plants showed no difference in Vc,max,25/Narea determined directly via in vivo and in vitro methods. Detailed phenotyping of glasshouse-grown plants of the 80 wheat lines also showed no correlation between photosynthetic traits measured via high-throughput phenotyping of field-grown plants. Our findings suggest that the complex interplay between traits determining crop productivity and the dynamic environments experienced by field-grown plants needs to be considered in designing strategies for effective wheat crop yield improvement when breeding for particular environments.


Subject(s)
Ribulose-Bisphosphate Carboxylase , Triticum , Biological Variation, Population , Photosynthesis , Plant Breeding , Ribulose-Bisphosphate Carboxylase/metabolism , Triticum/genetics , Triticum/metabolism
8.
Food Energy Secur ; 10(3): e292, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34594548

ABSTRACT

Trehalose 6-phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source- and sink-related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield-related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain-related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain-related traits. Gene-based prediction improved predictive ability for grain weight when gene effects were combined with the whole-genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.

9.
Biology (Basel) ; 10(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34571732

ABSTRACT

Grain yield (YLD) is a function of the total biomass (BM) and of partitioning the biomass by grains, i.e., the harvest index (HI). The most critical developmental stage for their determination is the flowering time, which mainly depends on the vernalization requirement (Vrn) and photoperiod sensitivity genes (Ppd) loci. Allelic variants at the Vrn, Ppd, and earliness per se (Eps) genes of elite spring wheat genotypes included in High Biomass Association Panel (HiBAP) I and II were used to estimate their effects on the phenological stages BM, HI, and YLD. Each panel was grown for two consecutive years in Northwest Mexico. Spring alleles at Vrn-1 had the largest effect on shortening the time to anthesis, and the Ppd-insensitive allele Ppd-D1a had the most significant positive effect on YLD in both panels. In addition, alleles at TaTOE-B1 and TaFT3-B1 promoted between 3.8% and 7.6% higher YLD and 4.2% and 10.2% higher HI in HiBAP I and II, respectively. When the possible effects of the TaTOE-B1 and TaFT3-B1 alleles on the sink and source traits were explored, the favorable allele at TaTOE-B1 showed positive effects on several sink traits mainly related to grain number. The favorable alleles at TaFT3-B1 followed a different pattern, with positive effects on the traits related to grain weight. The results of this study expanded the wheat breeders' toolbox in the quest to breed better-adapted and higher-yielding wheat cultivars.

10.
New Phytol ; 232(1): 162-175, 2021 10.
Article in English | MEDLINE | ID: mdl-34143507

ABSTRACT

Nocturnal stomatal conductance (gsn ) represents a significant source of water loss, with implications for metabolism, thermal regulation and water-use efficiency. With increasing nocturnal temperatures due to climate change, it is vital to identify and understand variation in the magnitude and responses of gsn in major crops. We assessed interspecific variation in gsn and daytime stomatal conductance (gs ) in a wild relative and modern spring wheat genotype. To investigate intraspecific variation, we grew six modern wheat genotypes and two landraces under well watered, simulated field conditions. For the diurnal data, higher gsn in the wild relative was associated with significantly lower nocturnal respiration and higher daytime CO2 assimilation while both species exhibited declines in gsn post-dusk and pre-dawn. Lifetime gsn achieved rates of 5.7-18.9% of gs . Magnitude of gsn was genotype specific 'and positively correlated with gs . gsn and gs were significantly higher on the adaxial surface. No relationship was determined between harvest characteristics, stomatal morphology and gsn , while cuticular conductance was genotype specific. Finally, for the majority of genotypes, gsn declined with age. Here we present the discovery that variation in gsn occurs across developmental, morphological and temporal scales in nonstressed wheat, presenting opportunities for exploiting intrinsic variation under heat or water stressed conditions.


Subject(s)
Plant Stomata , Triticum , Genotype , Plant Leaves , Plant Stomata/genetics , Triticum/genetics , Water
11.
Front Plant Sci ; 12: 591587, 2021.
Article in English | MEDLINE | ID: mdl-33664755

ABSTRACT

Plant height (PH) is an essential trait in the screening of most crops. While in crops such as wheat, medium stature helps reduce lodging, tall plants are preferred to increase total above-ground biomass. PH is an easy trait to measure manually, although it can be labor-intense depending on the number of plots. There is an increasing demand for alternative approaches to estimate PH in a higher throughput mode. Crop surface models (CSMs) derived from dense point clouds generated via aerial imagery could be used to estimate PH. This study evaluates PH estimation at different phenological stages using plot-level information from aerial imaging-derived 3D CSM in wheat inbred lines during two consecutive years. Multi-temporal and high spatial resolution images were collected by fixed-wing (P l a t F W ) and multi-rotor (P l a t M R ) unmanned aerial vehicle (UAV) platforms over two wheat populations (50 and 150 lines). The PH was measured and compared at four growth stages (GS) using ground-truth measurements (PHground) and UAV-based estimates (PHaerial). The CSMs generated from the aerial imagery were validated using ground control points (GCPs) as fixed reference targets at different heights. The results show that PH estimations using P l a t F W were consistent with those obtained from P l a t M R , showing some slight differences due to image processing settings. The GCPs heights derived from CSM showed a high correlation and low error compared to their actual heights (R 2 ≥ 0.90, RMSE ≤ 4 cm). The coefficient of determination (R 2) between PHground and PHaerial at different GS ranged from 0.35 to 0.88, and the root mean square error (RMSE) from 0.39 to 4.02 cm for both platforms. In general, similar and higher heritability was obtained using PHaerial across different GS and years and ranged according to the variability, and environmental error of the PHground observed (0.06-0.97). Finally, we also observed high Spearman rank correlations (0.47-0.91) and R 2 (0.63-0.95) of PHaerial adjusted and predicted values against PHground values. This study provides an example of the use of UAV-based high-resolution RGB imagery to obtain time-series estimates of PH, scalable to tens-of-thousands of plots, and thus suitable to be applied in plant wheat breeding trials.

12.
J Exp Bot ; 72(10): 3756-3773, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33713415

ABSTRACT

Wheat yields are stagnating or declining in many regions, requiring efforts to improve the light conversion efficiency, known as radiation use efficiency (RUE). RUE is a key trait in plant physiology because it links light capture and primary metabolism with biomass accumulation and yield, but its measurement is time consuming and this has limited its use in fundamental research and large-scale physiological breeding. In this study, high-throughput plant phenotyping (HTPP) approaches were used among a population of field-grown wheat with variation in RUE and photosynthetic traits to build predictive models of RUE, biomass, and intercepted photosynthetically active radiation (IPAR). Three approaches were used: best combination of sensors; canopy vegetation indices; and partial least squares regression. The use of remote sensing models predicted RUE with up to 70% accuracy compared with ground truth data. Water indices and canopy greenness indices [normalized difference vegetation index (NDVI), enhanced vegetation index (EVI)] are the better option to predict RUE, biomass, and IPAR, and indices related to gas exchange, non-photochemical quenching [photochemical reflectance index (PRI)] and senescence [structural-insensitive pigment index (SIPI)] are better predictors for these traits at the vegetative and grain-filling stages, respectively. These models will be instrumental to explain canopy processes, improve crop growth and yield modelling, and potentially be used to predict RUE in different crops or ecosystems.


Subject(s)
Remote Sensing Technology , Triticum , Ecosystem , Plant Breeding , Plant Leaves
13.
Plant Biotechnol J ; 19(8): 1537-1552, 2021 08.
Article in English | MEDLINE | ID: mdl-33638599

ABSTRACT

To feed an ever-increasing population we must leverage advances in genomics and phenotyping to harness the variation in wheat breeding populations for traits like photosynthetic capacity which remains unoptimized. Here we survey a diverse set of wheat germplasm containing elite, introgression and synthetic derivative lines uncovering previously uncharacterized variation. We demonstrate how strategic integration of exotic material alleviates the D genome genetic bottleneck in wheat, increasing SNP rate by 62% largely due to Ae. tauschii synthetic wheat donors. Across the panel, 67% of the Ae. tauschii donor genome is represented as introgressions in elite backgrounds. We show how observed genetic variation together with hyperspectral reflectance data can be used to identify candidate genes for traits relating to photosynthetic capacity using association analysis. This demonstrates the value of genomic methods in uncovering hidden variation in wheat and how that variation can assist breeding efforts and increase our understanding of complex traits.


Subject(s)
Plant Breeding , Triticum , Genetic Variation/genetics , Phenotype , Poaceae , Triticum/genetics
14.
New Phytol ; 230(2): 629-640, 2021 04.
Article in English | MEDLINE | ID: mdl-33124693

ABSTRACT

Wheat is the most widely grown crop globally, providing 20% of all human calories and protein. Achieving step changes in genetic yield potential is crucial to ensure food security, but efforts are thwarted by an apparent trade-off between grain size and number. Expansins are proteins that play important roles in plant growth by enhancing stress relaxation in the cell wall, which constrains cell expansion. Here, we describe how targeted overexpression of an α-expansin in early developing wheat seeds leads to a significant increase in grain size without a negative effect on grain number, resulting in a yield boost under field conditions. The best-performing transgenic line yielded 12.3% higher average grain weight than the control, and this translated to an increase in grain yield of 11.3% in field experiments using an agronomically appropriate plant density. This targeted transgenic approach provides an opportunity to overcome a common bottleneck to yield improvement across many crops.


Subject(s)
Ectopic Gene Expression , Triticum , Crops, Agricultural/metabolism , Edible Grain/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Triticum/genetics , Triticum/metabolism
15.
Plant Sci ; 295: 110396, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32534615

ABSTRACT

The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots collecting high-resolution data sets on a wide array of traits. This has been made possible by recent advances in sensor technology and data processing. Nonetheless, more comprehensive often destructive phenotyping still has much to offer in breeding as well as research. This review considers the 'breeder friendliness' of phenotyping within three main domains: (i) the 'minimum data set', where being 'handy' or accessible and easy to collect and use is paramount, visual assessment often being preferred; (ii) the high throughput phenotyping (HTP), relatively new for most breeders, and requiring significantly greater investment with technical hurdles for implementation and a steeper learning curve than the minimum data set; (iii) detailed characterization or 'precision' phenotyping, typically customized for a set of traits associated with a target environment and requiring significant time and resources. While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models, that can be built from the high-throughput and detailed precision phenotypes. This review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translational research to deliver other new breeding resources, and how the different categories of phenotyping listed above apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.


Subject(s)
Crops, Agricultural/genetics , Phenotype , Plant Breeding/methods , Crops, Agricultural/growth & development , Genomics , Plant Breeding/statistics & numerical data
16.
Curr Opin Plant Biol ; 56: 223-234, 2020 08.
Article in English | MEDLINE | ID: mdl-32088154

ABSTRACT

Small grain cereals such as wheat, rice and barley are among the most important crops worldwide. Any attempt to increase crop productivity and stability through breeding implies developing new strategies for plant phenotyping, including defining ideotype attributes for selection. Recently, the role of non-foliar photosynthetic organs, particularly the inflorescences, has received increasing attention. For example, ear photosynthesis has been reported to be a major contributor to grain filling in wheat and barley under stress and good agronomic conditions. This review provides an overview of the particular characteristics of the ear that makes this photosynthetic organ better adapted to grain filling than the flag leaf and revises potential metabolic and molecular traits that merit further research as targets for cereal improvement. Currently, the absence of high-throughput phenotyping methods limits the inclusion of ear photosynthesis in the breeding agenda. In this regard, a number of different approaches are presented.


Subject(s)
Edible Grain , Photosynthesis , Crops, Agricultural/genetics , Hordeum , Triticum
17.
J Exp Bot ; 71(7): 2299-2311, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31565736

ABSTRACT

One way to increase yield potential in wheat is screening for natural variation in photosynthesis. This study uses measured and modelled physiological parameters to explore genotypic diversity in photosynthetic capacity (Pc, Rubisco carboxylation capacity per unit leaf area at 25 °C) and efficiency (Peff, Pc per unit of leaf nitrogen) in wheat in relation to fertilizer, plant stage, and environment. Four experiments (Aus1, Aus2, Aus3, and Mex1) were carried out with diverse wheat collections to investigate genetic variation for Rubisco capacity (Vcmax25), electron transport rate (J), CO2 assimilation rate, stomatal conductance, and complementary plant functional traits: leaf nitrogen, leaf dry mass per unit area, and SPAD. Genotypes for Aus1 and Aus2 were grown in the glasshouse with two fertilizer levels. Genotypes for Aus3 and Mex1 experiments were grown in the field in Australia and Mexico, respectively. Results showed that Vcmax25 derived from gas exchange measurements is a robust parameter that does not depend on stomatal conductance and was positively correlated with Rubisco content measured in vitro. There was significant genotypic variation in most of the experiments for Pc and Peff. Heritability of Pc reached 0.7 and 0.9 for SPAD. Genotypic variation and heritability of traits show that there is scope for these traits to be used in pre-breeding programmes to improve photosynthesis with the ultimate objective of raising yield potential.


Subject(s)
Plant Breeding , Triticum , Australia , Carbon Dioxide , Genetic Variation , Photosynthesis/genetics , Plant Leaves , Triticum/genetics
18.
Plant Sci ; 282: 73-82, 2019 May.
Article in English | MEDLINE | ID: mdl-31003613

ABSTRACT

Reproductive organs are the main reason we grow and harvest most plant species as crops, yet they receive less attention from phenotyping due to their complexity and inaccessibility for analysis. This review highlights recent progress towards the quantitative high-throughput phenotyping of reproductive development, focusing on three impactful areas that are pivotal for plant breeding and crop production. First, we look at phenotyping phenology, summarizing the indirect and direct approaches that are available. This is essential for analysis of genotype by environment, and to enable effective management interpretation and agronomy and physiological interventions. Second, we look at pollen development and production, in addition to anther characteristics, these are critical points of vulnerability for yield loss when stress occurs before and during flowering, and are of particular interest for hybrid technology development. Third, we elaborate on phenotyping yield components, indirectly or directly during the season, with a numerical or growth related approach and post-harvest processing. Finally, we summarise the opportunities and challenges ahead for phenotyping reproductive growth and their feasibility and impact, with emphasis on plant breeding applications and targeted yield increases.


Subject(s)
Crops, Agricultural/physiology , Plant Breeding , Crops, Agricultural/genetics , Genotype , Phenotype
19.
Plant Biotechnol J ; 17(7): 1276-1288, 2019 07.
Article in English | MEDLINE | ID: mdl-30549213

ABSTRACT

One of the major challenges for plant scientists is increasing wheat (Triticum aestivum) yield potential (YP). A significant bottleneck for increasing YP is achieving increased biomass through optimization of radiation use efficiency (RUE) along the crop cycle. Exotic material such as landraces and synthetic wheat has been incorporated into breeding programmes in an attempt to alleviate this; however, their contribution to YP is still unclear. To understand the genetic basis of biomass accumulation and RUE, we applied genome-wide association study (GWAS) to a panel of 150 elite spring wheat genotypes including many landrace and synthetically derived lines. The panel was evaluated for 31 traits over 2 years under optimal growing conditions and genotyped using the 35K wheat breeders array. Marker-trait association identified 94 SNPs significantly associated with yield, agronomic and phenology-related traits along with RUE and final biomass (BM_PM) at various growth stages that explained 7%-17% of phenotypic variation. Common SNP markers were identified for grain yield, BM_PM and RUE on chromosomes 5A and 7A. Additionally, landrace and synthetic derivative lines showed higher thousand grain weight (TGW), BM_PM and RUE but lower grain number (GM2) and harvest index (HI). Our work demonstrates the use of exotic material as a valuable resource to increase YP. It also provides markers for use in marker-assisted breeding to systematically increase BM_PM, RUE and TGW and avoid the TGW/GM2 and BM_PM/HI trade-off. Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and candidate genes for further study.


Subject(s)
Biomass , Triticum/growth & development , Triticum/radiation effects , Genetic Association Studies , Genetic Markers , Genotype , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds/growth & development
20.
J Exp Bot ; 69(3): 483-496, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29309611

ABSTRACT

Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350-2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectral reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for Narea, with bias <0.7%. The models were tested on elite lines and landraces that had not been used to create the models. The bias varied between -2.3% and -5.5% while relative error of prediction was similar for SPAD but slightly greater for LMA and Narea.


Subject(s)
Carbon Dioxide/physiology , Photosynthesis/physiology , Spectrophotometry, Infrared/methods , Triticum/physiology , Plant Leaves/physiology , Spectrophotometry, Infrared/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...