Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(18): 8490-8497, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37671916

ABSTRACT

Near-field radiative heat transfer (NFRHT) measurements often rely on custom microdevices that can be difficult to reproduce after their original demonstration. Here we study NFRHT using plain silicon nitride (SiN) membrane nanomechanical resonators─a widely available substrate used in applications such as electron microscopy and optomechanics─and on which other materials can easily be deposited. We report measurements down to a minimal distance of 180 nm between a large radius of curvature (15.5 mm) glass radiator and a SiN membrane resonator. At such deep sub-wavelength distance, heat transfer is dominated by surface polariton resonances over a (0.25 mm)2 effective area, which is comparable to plane-plane experiments employing custom microfabricated devices. We also discuss how measurements using nanomechanical resonators create opportunities for simultaneously measuring near-field radiative heat transfer and thermal radiation forces (e.g., thermal corrections to Casimir forces).

2.
Opt Express ; 31(26): 44212-44223, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178498

ABSTRACT

Recent advances in fundamental performance limits for power quantities based on Lagrange duality are proving to be a powerful theoretical tool for understanding electromagnetic wave phenomena. To date, however, in any approach seeking to enforce a high degree of physical reality, the linearity of the wave equation plays a critical role. In this manuscript, we generalize the current quadratically constrained quadratic program framework for evaluating linear photonics limits to incorporate nonlinear processes under the undepleted pump approximation. Via the exemplary objective of enhancing second harmonic generation in a (free-form) wavelength-scale structure, we illustrate a model constraint scheme that can be used in conjunction with standard convex relaxations to bound performance in the presence of nonlinear dynamics. Representative bounds are found to anticipate features observed in optimized structures discovered via computational inverse design. The formulation can be straightforwardly modified to treat other frequency-conversion processes, including Raman scattering and four-wave mixing.

3.
Phys Rev Lett ; 124(1): 013904, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31976696

ABSTRACT

In a previous Letter, we derived fundamental limits to radiative heat transfer applicable in near- through far-field regimes, based on the choice of material susceptibilities and bounding surfaces enclosing arbitrarily shaped objects; the limits exploit algebraic properties of Maxwell's equations and fundamental principles such as electromagnetic reciprocity and passivity. In this Letter, we apply these bounds to two different geometric configurations of interest, namely dipolar particles or extended structures of infinite area in the near field of one another. We find that while near-field radiative heat transfer between dipolar particles can saturate purely geometric "Landauer" limits, bounds on extended structures cannot, instead growing very slowly with respect to a material response figure of merit (an "inverse resistivity" for metals) due to the deleterious effects of multiple scattering between bodies. While nanostructuring can produce infrared resonances, it is generally unable to further enhance the resonant energy transfer spectrum beyond what is practically achieved by planar media at the surface polariton condition.

4.
Phys Rev Lett ; 123(25): 257401, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922767

ABSTRACT

We derive fundamental per-channel bounds on angle-integrated absorption and thermal radiation for arbitrarily structured bodies-for any given material susceptibility and bounding region-that simultaneously encode both the per-volume limit on polarization set by passivity and geometric constraints on radiative efficiencies set by finite object sizes through the scattering T operator. We then analyze these bounds in two practical settings, comparing against prior limits as well as near optimal structures discovered through topology optimization. Principally, we show that the bounds properly capture the physically observed transition from the volume scaling of absorptivity seen in deeply subwavelength objects (nanoparticle radius or thin film thickness) to the area scaling of absorptivity seen in ray optics (blackbody limits).

5.
Opt Express ; 26(20): 26713-26721, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30469752

ABSTRACT

Efficient coupling between on-chip sources and cavities plays a key role in silicon photonics. However, despite the importance of this basic functionality, there are few systematic design tools to simultaneously control coupling between multiple modes in a compact resonator and a single waveguide. Here, we propose a large-scale adjoint optimization approach to produce wavelength-scale waveguide-cavity couplers operating over tunable and broad frequency bands. We numerically demonstrate couplers discovered by this method that can achieve critical, or nearly critical, coupling between multi-ring cavities and a single waveguide at up to six widely separated wavelengths spanning the 560-1500 nm range of interest for on-chip nonlinear optical devices.

6.
Opt Express ; 21 Suppl 1: A96-110, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23389280

ABSTRACT

We propose a method for engineering thermally excited far field electromagnetic radiation using epsilon-near-zero metamaterials and introduce a new class of artificial media: epsilon-near-pole metamaterials. We also introduce the concept of high temperature plasmonics as conventional metamaterial building blocks have relatively poor thermal stability. Using our approach, the angular nature, spectral position, and width of the thermal emission and optical absorption can be finely tuned for a variety of applications. In particular, we show that these metamaterial emitters near 1500 K can be used as part of thermophotovoltaic devices to surpass the full concentration Shockley-Queisser limit of 41%. Our work paves the way for high temperature thermal engineering applications of metamaterials.


Subject(s)
Computer Simulation , Hot Temperature , Light , Models, Theoretical , Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...