Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 173(Pt 2): 113455, 2023 11.
Article in English | MEDLINE | ID: mdl-37803781

ABSTRACT

Water-in-oil-in-water (W1/O/W2) emulsions offer the potential to deliver hydrophilic bioactive compounds into foods, yet their application remains limited due to their instability. Thus, the impact of lipid phase composition and state on the colloidal stability, in vitro lipid digestibility and chlorophyllin (CHL) bioaccessibility of W1/O/W2 emulsions before and after incorporation into whole milk was studied. Medium-chain triglyceride oil (MCT) was used as a liquid lipid phase and MCT with glyceryl stearate (GS) or pure hydrogenated palm oil (HPO) as gelled lipid phases. The lipid phase composition was crucial to forming W1/O/W2 emulsions. MCT or MCT+GS allowed the successful formation of W1/O/W2 emulsions, being more stable upon gastric conditions those formulated with MCT+GS than pure MCT. In contrast, the use of HPO led to phase separation, which was maintained after the gastric conditions. Regarding their lipid digestibility, W1/O/W2 emulsions formulated with MCT or MCT+GS were fully digested, whereas only 40% of the lipid was digested using HPO. In accordance, the CHL bioaccessibility was higher using MCT or MCT+GS than HPO. When co-digested with whole milk, the colloidal stability and lipid digestibility of the W1/O/W2 emulsions with MCT or MCT+GS were not altered, whereas the W1/O/W2 emulsion-HPO showed enhanced colloidal stability and lipid digestibility (57.71 ± 3.06%), due to the surface-active properties of milk protein. The present study provides useful information to develop stable functional foods enriched with hydrophilic bioactive compounds by using W1/O/W2 emulsions.


Subject(s)
Chlorophyllides , Emulsions , Glycerides , Water
2.
Molecules ; 26(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435343

ABSTRACT

Water-in-oil-in-water (W1/O/W2) emulsions are emulsion-based systems where the dispersed phase is an emulsion itself, offering great potential for the encapsulation of hydrophilic bioactive compounds. However, their formation and stabilization is still a challenge mainly due to water migration, which could be reduced by lipid phase gelation. This study aimed to assess the impact of lipid phase state being liquid or gelled using glyceryl stearate (GS) at 1% (w/w) as well as the hydrophilic emulsifier (T80: Tween 80 or lecithin) and the oil type (MCT:medium chain triglyceride or corn oil (CO) as long chain triglyceride) on the formation and stabilization of chlorophyllin W1/O/W2 emulsions. Their colloidal stability against temperature and light exposure conditions was evaluated. Gelling both lipid phases (MCT and CO) rendered smaller W1 droplets during the first emulsification step, followed by formation of W1/O/W2 emulsions with smaller W1/O droplet size and more stable against clarification. The stability of W1/O/W2 emulsions was sensitive to a temperature increase, which might be related to the lower gelling degree of the lipid phase at higher temperatures. This study provides valuable insight for the formation and stabilization of W1/O/W2 emulsions with gelled lipid phases as delivery systems of hydrophilic bioactive compounds under common food storage conditions.


Subject(s)
Emulsifying Agents/chemistry , Lipids/chemistry , Corn Oil/chemistry , Emulsions , Gels/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Polysorbates/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...