Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Syst Appl Microbiol ; 43(1): 126039, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31776051

ABSTRACT

Clinical and environmental-associated strains (n=17), genotypically related to Corynebacterium spp., yet distinct from any species of the genus Corynebacterium with validly published names, have been isolated during the last 20 years and tentatively identified as Corynebacterium sanguinis, although the combination, "Corynebacterium sanguinis" was never validly published. The comprehensive genotypic and phenotypic characterisations and genomic analyses in this study support the proposal for recognizing the species within the genus Corynebacterium, for which the name, Corynebacterium sanguinis sp. nov., is reaffirmed and proposed. Strains of Corynebacterium sanguinis are Gram-positive, non-motile, non-spore-forming, short, pleomorphic and coryneform bacilli, growing aerobically, with CO2. They contain mycolic acids, major respiratory menaquinones, MK-8 (II-H2) and MK-9 (II-H2), and polar lipids, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, glycolipids and a novel lipid that remains to be characterized and identified. Strains of Corynebacterium sanguinis are genotypically most similar to Corynebacterium lipophiliflavum, with 16S rRNA gene sequence similarities of 98.3% and rpoB sequence similarities of 94.9-95.2%. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis were able to clearly differentiate Corynebacterium sanguinis from the most closely related species. The genome size of Corynebacterium sanguinis is 2.28-2.37Mbp with 65.1-65.5mol% G+C content. A total of 2202-2318 ORFs were predicted, comprising 2141-2251 protein-encoding genes. The type strain is CCUG 58655T (=CCM 8873T=NCTC 14287T).


Subject(s)
Corynebacterium Infections/microbiology , Corynebacterium/classification , Environmental Microbiology , Bacterial Proteins/genetics , Base Composition , Corynebacterium/chemistry , Corynebacterium/cytology , Corynebacterium/physiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genome Size , Genome, Bacterial/genetics , Glycolipids/chemistry , Humans , Nucleic Acid Hybridization , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity , Vitamin K 2/chemistry
2.
Int J Syst Evol Microbiol ; 69(3): 783-790, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30688628

ABSTRACT

A novel Gram-positive, non-motile, non-spore-forming and aerobic bacterium, designated strain VA37-3T, was isolated from a marine sediment sample collected at 19.2 m water depth from Valparaíso bay, Chile. Strain VA37-3T exhibits 97.6 % 16S rRNA gene sequence similarity to Corynebacterium marinum D7015T, 96.4 % to Corynebacterium humireducens MFC-5T and 96 % to Corynebacterium testudinoris M935/96/4T; and a rpoB gene sequence similarity of 85.1 % to Corynebacterium pollutisoli VMS11T, both analyses suggesting that strain VA37-3T represents a novel species of Corynebacterium. Physiological testing indicated that strain VA37-3T requires artificial sea water or sodium-supplemented media for growth, representing the first obligate marine actinomycete of the genus Corynebacterium. The genome of the proposed new species, along with the type strains of its most closely related species were sequenced and characterized. In silico genome-based similarity analyses revealed an ANIb of 72.8 % (C. marinum D7015T), ANIm of 85.0 % (Corynebacterium mustelae DSM 45274T), tetra of 0.90 (Corynebacterium callunae DSM 20147T) and ggdc of 24.7 % (Corynebacterium kutscheri DSM 20755T) when compared with the closest related strains. The genomic DNA G+C content of strain VA37-3T was 57.0 %. Chemotaxonomic assessment of strain VN6-2T showed the major fatty acids were C18 : 1ω9c and C16 : 0. Menaquinones predominantly consisted of MK-8(II-H2). Polar lipids consisted of diphosphatidylglycerol, glycolipids, phosphatidylglycerol, phosphoglycolipid and phosphatidylinositol. Mycolic acids also were present. Overall, the results from phylogenetic, phenotypic and genomic analyses confirmed that strain VA37-3T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium alimapuense sp. nov. is proposed, with VA37-3T as the type strain (=CCUG 69366T=NCIMB 15118T).


Subject(s)
Corynebacterium/classification , Geologic Sediments/microbiology , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , Bays , Chile , Corynebacterium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
3.
J Clin Microbiol ; 48(9): 3138-45, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20660219

ABSTRACT

Eighteen Corynebacterium xerosis strains isolated from different animal clinical specimens were subjected to phenotypic and molecular genetic studies. On the basis of the results of the biochemical characterization, the strains were tentatively identified as C. xerosis. Phylogenetic analysis based on comparative analysis of the sequences of 16S rRNA and rpoB genes revealed that the 18 strains were highly related to C. xerosis, C. amycolatum, C. freneyi, and C. hansenii. There was a good concordance between 16S rRNA and partial rpoB gene sequencing results, although partial rpoB gene sequencing allowed better differentiation of C. xerosis. Alternatively, C. xerosis was also differentiated from C. freneyi and C. amycolatum by restriction fragment length polymorphism analysis of the 16S-23S rRNA gene intergenic spacer region. Phenotypic characterization indicated that besides acid production from D-turanose and 5-ketogluconate, 90% of the strains were able to reduce nitrate. The absence of the fatty acids C(14:0), C(15:0), C(16:1)omega 7c, and C(17:1)omega 8c can also facilitate the differentiation of C. xerosis from closely related species. The results of the present investigation demonstrated that for reliable identification of C. xerosis strains from clinical samples, a combination of phenotypic and molecular-biology-based identification techniques is necessary.


Subject(s)
Corynebacterium Infections/veterinary , Corynebacterium/classification , Corynebacterium/genetics , Animals , Bacterial Proteins/genetics , Bacterial Typing Techniques , Cluster Analysis , Corynebacterium/isolation & purification , Corynebacterium/metabolism , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , DNA-Directed RNA Polymerases/genetics , Molecular Sequence Data , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...