Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(5): 103567, 2024 May.
Article in English | MEDLINE | ID: mdl-38417302

ABSTRACT

Improving productive performance is a daily challenge in the poultry industry. Developing cost-effective additives and strategies that improve performance in antibiotic-free poultry production is critical to maintaining productivity and efficiency. This study evaluates the influence of a commercially available phytogenic feed additive (CA-PFA, that comprises silymarin, betaine and curcumin extracts as main ingredients) and silymarin on commercial broilers' productive performance and liver function with and without carbon tetrachloride (CCl4)-induced liver damage. The experiment was conducted in a completely randomized design, with six treatments, eight replicates, and eight birds per replicate in 18 one-day-old male broilers (Cobb Vantress 500) each; under a 3 × 2 factorial arrangement (3 diets x 2 levels of CCl4, 0 and 1 mL/kg body weight orally). The experimental treatments included 3 diets, commercially recommended doses of CA-PFA (500 mg/kg of feed; this dose provides 70 mg/kg of silymarin, besides the other active ingredients included in the formulation), silymarin (250 mg/kg of feed, containing 28% of active ingredient; this dose provides 70 mg/kg of silymarin as active ingredient) and an additive-free basal diet as a control. A standard commercial silymarin was used as a reference due to its well-known and extensively studied hepatoprotective properties that can mitigate the negative effects of CCl4 in the liver. The data were analyzed as a 2-way ANOVA, and the means showing significant (P ≤ 0.05) differences were then compared using the Post-Hoc Tukey HSD test. No interaction was detected between factors. Exposure to CCl4 had a noticeable detrimental effect on alertness, productive performance, and liver function of broilers without a significant increase in mortality. Including CA-PFA in the diet improved productive performance compared to the basal diet from day 21 to the end of the trial, on day 42. While no influence in feed intake was detected for any treatment, CA-PFA improved body weight gain (BWG) and feed conversion ratio (FCR) significantly (P < 0.05) from day 21 to the end of the trial in healthy and CCl4-exposed birds. The results show that CA-PFA supplementation improves performance parameters in broilers with and without CCl4-induced liver damage, when compared to a basal diet and the addition of a standard commercial silymarin product.


Subject(s)
Animal Feed , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Chickens , Diet , Dietary Supplements , Poultry Diseases , Silymarin , Animals , Silymarin/administration & dosage , Silymarin/pharmacology , Animal Feed/analysis , Male , Diet/veterinary , Dietary Supplements/analysis , Poultry Diseases/chemically induced , Poultry Diseases/prevention & control , Chemical and Drug Induced Liver Injury/veterinary , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/etiology , Betaine/administration & dosage , Betaine/pharmacology , Random Allocation , Curcumin/administration & dosage , Curcumin/pharmacology , Liver/drug effects
2.
Science ; 342(6161): 967-70, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24264989

ABSTRACT

The gut microbiota influences both local and systemic inflammation. Inflammation contributes to development, progression, and treatment of cancer, but it remains unclear whether commensal bacteria affect inflammation in the sterile tumor microenvironment. Here, we show that disruption of the microbiota impairs the response of subcutaneous tumors to CpG-oligonucleotide immunotherapy and platinum chemotherapy. In antibiotics-treated or germ-free mice, tumor-infiltrating myeloid-derived cells responded poorly to therapy, resulting in lower cytokine production and tumor necrosis after CpG-oligonucleotide treatment and deficient production of reactive oxygen species and cytotoxicity after chemotherapy. Thus, optimal responses to cancer therapy require an intact commensal microbiota that mediates its effects by modulating myeloid-derived cell functions in the tumor microenvironment. These findings underscore the importance of the microbiota in the outcome of disease treatment.


Subject(s)
Intestines/microbiology , Microbiota/physiology , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Anti-Bacterial Agents/administration & dosage , Antigen Presentation/genetics , Antineoplastic Agents/therapeutic use , Bacteria/drug effects , Bacterial Physiological Phenomena/drug effects , Down-Regulation , Gene Expression Regulation , Germ-Free Life , Immunotherapy , Inflammation/genetics , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Microbiota/drug effects , Neoplasm Transplantation , Neoplasms/microbiology , Oligodeoxyribonucleotides/therapeutic use , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Phagocytosis/genetics , Reactive Oxygen Species/metabolism , Symbiosis , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...