ABSTRACT
Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03-0.09 g/L in VP-IVIg and of 0.06-0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.
ABSTRACT
Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.