Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
FASEB J ; 35(2): e21286, 2021 02.
Article in English | MEDLINE | ID: mdl-33484478

ABSTRACT

Human Fibroblast Growth Factor 19 (FGF19) and mouse ortholog Fgf15 play similar roles in liver regeneration and metabolism via the activation of Fgfr4/b-klotho (Klb). Monomeric FGF19 and dimeric Fgf15 are both necessary for liver regeneration and proper bile acid (BA) metabolism. FGF19 elicits stronger effects than Fgf15 on glucose and fatty acid metabolism and only FGF19 induces hepatocellular carcinoma (HCC). However, inhibiting FGF19/FGFR4 signaling in HCC patients is associated with toxicity due to elevated BA levels. Here, we examine the structure/function relationship in Fgf15/FGF19 to better understand the molecular basis for their distinct functions. We demonstrate that FGF19 is a more effective activator of Fgfr4 and of downstream signaling (Erk, Plcg1) than Fgf15. Furthermore, we use site-directed mutagenesis to show that the presence or absence of an unpaired cysteine in Fgf15/19 modulates ligand structure and determines the ability of these molecules to induce hepatocyte proliferation, with monomers being more potent activators. Consistent with these findings, an engineered dimeric variant of FGF19 is less effective than wild-type FGF19 at inducing liver growth in cooperation with the Wnt-enhancer RSPO3. In contrast to effects on proliferation, monomeric and dimeric ligands equally inhibited the expression of Cyp7a1, the enzyme catalyzing the rate limiting step in BA production. Thus, structure and function of Fgf15/FGF19 are intricately linked, explaining why FGF19, but not Fgf15, induces liver tumorigenesis. Our data provide insight into FGF19/FGFR4 signaling and may inform strategies to target this pathway while limiting on-target toxicity due to dysregulation of BA production or induction of hepatocyte proliferation.


Subject(s)
Cell Proliferation , Fibroblast Growth Factors/metabolism , Hepatocytes/metabolism , Protein Multimerization , Signal Transduction , Amino Acid Motifs , Animals , Cholesterol 7-alpha-Hydroxylase/metabolism , Female , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/genetics , HEK293 Cells , Humans , Male , Mice , Mutation , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Thrombospondins/metabolism
2.
Angiogenesis ; 23(4): 581-597, 2020 11.
Article in English | MEDLINE | ID: mdl-32440964

ABSTRACT

The liver is a common host organ for cancer, either through lesions that arise in liver epithelial cells [e.g., hepatocellular carcinoma (HCC)] or as a site of metastasis by tumors arising in other organs (e.g., colorectal cancer). However, the changes that occur in liver stromal cells in response to cancer have not been fully characterized, nor has it been determined whether the different sources of liver cancer induce distinct stromal changes. Here, we performed single-cell profiling of liver stromal cells from mouse models of induced spontaneous liver cancer or implanted colorectal liver metastases, with a focus on tumor endothelial cells (ECs). While ECs in liver tissue adjacent to cancerous lesions (so-called adjacent normal) corresponded to liver zonation phenotypes, their transcriptomes were also clearly altered by the presence of a tumor. In comparison, tumor EC transcriptomes show stronger similarities to venous than sinusoidal ECs. Further, tumor ECs, independent of tumor origin, formed distinct clusters displaying conserved "tip-like" or "stalk-like" characteristics, similar to ECs from subcutaneous tumors. However, they also carried liver-specific signatures found in normal liver ECs, suggesting an influence of the host organ on tumor ECs. Our results document gene expression signatures in ECs in liver cancer and show that the host organ, and not the site of tumor origin (liver versus colorectal), is a primary determinant of EC phenotype. In addition, primarily in tumors, we further defined a cluster of chimeric cells that expressed both myeloid and endothelial cell markers and might play a role in tumor angiogenesis.


Subject(s)
Chimerism , Endothelial Cells/pathology , Liver Neoplasms/genetics , Single-Cell Analysis , Transcriptome/genetics , Animals , Cell Line, Tumor , Humans , Hydrodynamics , Liver/metabolism , Liver/pathology , Liver Neoplasms/immunology , Mice, Inbred C57BL , Myeloid Cells/metabolism
3.
Mol Biochem Parasitol ; 144(2): 218-26, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16202458

ABSTRACT

Trypanosome lytic factor 1 (TLF1) is a subclass of human high-density lipoprotein that kills some African trypanosomes thereby protecting humans from infection. We have shown that TLF1 is a 500 kDa HDL complex composed of lipids and at least seven different proteins. Here we present evidence outlining a new paradigm for the mechanism of lysis; TLF1 forms cation-selective pores in membranes. We show that the replacement of external Na+ (23 Da) with the larger tetramethylammonium+, choline+ and tetraethylammonium+ ions (74 Da, 104 Da and 130 Da) ameliorates the osmotically driven swelling and lysis of trypanosomes by TLF1. Confirmation of cation pore-formation was obtained using small unilamellar vesicles incubated with TLF1; these showed the predicted change in membrane potential expected from an influx of sodium ions. Using planar lipid bilayer model membranes made from trypanosome lipids, which allow the detection of single channels, we found that TLF1 forms discrete ion-conducting channels (17 pS) that are selective for potassium ions over chloride ions. We propose that the initial influx of extracellular Na+ down its concentration gradient promotes the passive entry of Cl- through preexisting Cl- channels. The net influx of both Na+ and Cl- create an osmotic imbalance that leads to passive water diffusion. This loss of osmoregulation results in cytoplasmic vacuolization, cell swelling and ultimately trypanosome lysis.


Subject(s)
Cations/metabolism , Cell Membrane Permeability , Lipoproteins, HDL/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Chlorine/metabolism , Humans , Ion Channels/metabolism , Ions/metabolism , Lipoproteins, HDL/isolation & purification , Membrane Potentials , Potassium/metabolism , Sodium , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/physiology , Water-Electrolyte Balance
4.
Rev. argent. microbiol ; 23(1): 1-14, ene.-feb. 1991. ilus, tab
Article in Spanish | BINACIS | ID: bin-25844

ABSTRACT

Las º-naftoquinonas CG 8-935, CG 9-442, CG 10-248 y las mansonomas A, C, E y F inhiben el crecimiento de L. seymouri (LS) y C. fasciculata (CF). Las mansononas más activas fueron E y F (I50, 0.1 y 0.4 *M con LS y 0.3-1.2 *M con CF), con actividades citotóxicas iguales o superiores a las de las o-quinonas CG. La incubación de los protozoarios con las quinonas CG y las quinonas E y F indujo la producción de H2O2 y O2. Menor producción se obtuvo con la perezona y la priminina (p-benzoquinonas utilizadas como testigo). El efecto de las o-quinonas fue proprocional a su concentración y con las mansononas E y F la producción de O2 fue 4-5 veces mayor que la de H2O2. Diferencias menores se observaron con las quinonas CG. La producción de peróxidos resultó de un ciclo redox, iniciado por una fase anaeróbica (I) en la que se formaron los quinoles, seguida por una fase aeróbica (II) en la que se formó O2 y H2O2. Con las mansononas E y F, y las quinonas CG, la velocidad de la fase II fue superior o igual a la de la fase I pero, con las mansononas A y C, la velocidad de oxidación de los quinoles fue 8-10 veces menor que la de reducción de las quinonas. Esas diferencias concuerdan con a) la oxidación in vitro de los quinoles; b) su capacidad para producir O2 y c) su capacidad para inducir la quimiluminiscencia de la lucigenina. Los resultados descriptos demuestran la intervención de oxi-radicales en la citotoxicidad de las º-quinonas, no obstante la existencia de catalasa y otras enzimas protectoras en LS y CF, pero no se descartan otros mecanismos. La sensibilidad de ambos organismos a las quinonas estudiadas, similar o superior a la del T. cruzi, autoriza a utilizar a LS y CF como modelos para el ensayo de quimioterápicos antichagásicos (AU)


Subject(s)
Comparative Study , Animals , Crithidia fasciculata/drug effects , Trypanosomatina/drug effects , Peroxides/metabolism , Naphthoquinones/pharmacology , Crithidia fasciculata/growth & development , Crithidia fasciculata/metabolism , Trypanosomatina/growth & development , Trypanosomatina/metabolism , Hydrogen Peroxide/metabolism , Superoxides/metabolism , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/drug effects , Oxidation-Reduction
5.
Rev. argent. microbiol ; 23(1): 1-14, ene.-feb. 1991. ilus, tab
Article in Spanish | LILACS | ID: lil-117767

ABSTRACT

Las §-naftoquinonas CG 8-935, CG 9-442, CG 10-248 y las mansonomas A, C, E y F inhiben el crecimiento de L. seymouri (LS) y C. fasciculata (CF). Las mansononas más activas fueron E y F (I50, 0.1 y 0.4 *M con LS y 0.3-1.2 *M con CF), con actividades citotóxicas iguales o superiores a las de las o-quinonas CG. La incubación de los protozoarios con las quinonas CG y las quinonas E y F indujo la producción de H2O2 y O2. Menor producción se obtuvo con la perezona y la priminina (p-benzoquinonas utilizadas como testigo). El efecto de las o-quinonas fue proprocional a su concentración y con las mansononas E y F la producción de O2 fue 4-5 veces mayor que la de H2O2. Diferencias menores se observaron con las quinonas CG. La producción de peróxidos resultó de un ciclo redox, iniciado por una fase anaeróbica (I) en la que se formaron los quinoles, seguida por una fase aeróbica (II) en la que se formó O2 y H2O2. Con las mansononas E y F, y las quinonas CG, la velocidad de la fase II fue superior o igual a la de la fase I pero, con las mansononas A y C, la velocidad de oxidación de los quinoles fue 8-10 veces menor que la de reducción de las quinonas. Esas diferencias concuerdan con a) la oxidación in vitro de los quinoles; b) su capacidad para producir O2 y c) su capacidad para inducir la quimiluminiscencia de la lucigenina. Los resultados descriptos demuestran la intervención de oxi-radicales en la citotoxicidad de las §-quinonas, no obstante la existencia de catalasa y otras enzimas protectoras en LS y CF, pero no se descartan otros mecanismos. La sensibilidad de ambos organismos a las quinonas estudiadas, similar o superior a la del T. cruzi, autoriza a utilizar a LS y CF como modelos para el ensayo de quimioterápicos antichagásicos


Subject(s)
Animals , Crithidia fasciculata/drug effects , Naphthoquinones/pharmacology , Peroxides/metabolism , Trypanosomatina/drug effects , Crithidia fasciculata/growth & development , Crithidia fasciculata/metabolism , Oxidation-Reduction , Hydrogen Peroxide/metabolism , Superoxides/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development , Trypanosomatina/growth & development , Trypanosomatina/metabolism
6.
Rev. argent. microbiol ; 21(3/4): 102-10, jul.-dic. 1989. tab
Article in Spanish | BINACIS | ID: bin-27771

ABSTRACT

Se ensayaron varias aminoisoxazolil-1,2-naftoquinomas sobre la formación de anión superóxido (O2) y peróxido de hidrógeno (H2O2) por Crithidia fasciculata y Leptomonas seymouri. Los compuestos IVD (N-(5-metil-3-isoxazolil)-4 amino-1,2-naftoquinona; IIID (2-hidroxi-N-(5-metil-3-isoxazoli)-1,4-naftoquinona-4-imina) y IIIE (2-hidroxi-N-(3-metil-5-isoxazolil)-1,4-naftoquinona-4-imina) estimularon la produción de H2O2 mientras que IIIE, IIIC (2-hidroxi-N-(3,5-dimetil-4-isoxazoli)-1,4-naftoquinona-4-imina) y IIIA (2-hidroxi-N-3,4-dimetil-5-isoxazolil)-1,4-naftoquinona-4-imina), pero no IVD, estimularon la formación de O2 en los organismos estudiados. El ciclo redox de las quinona-iminas se verificó por a) la variación de su absorbancia en función de la concentración de oxígeno en el medio de suspensión de las células; b) su reducción anaeróbica, relativamente rápida, con velocidad máxima para IVD; c) la oxidación de los quinoles correspondientes, obtenidos por reducción con borohidruro. C. fasciculata y L. seymouri contenían superóxido dismutasa, enzima esencial para la formación de peróxidos como consecuencia del ciclo redox de las quinonas, y también catalasa, cuya actividad fue seis veces mayor en C. fasciculata. La presencia de catalasa no impidió la formación de H2O2, como producto metabólico de las quinona-iminas. No se pudo demostrar actividad de ascorbato peroxidasa, benzidina peroxidasa o guayacol peroxidasa en los organismos estudiados (AU)


Subject(s)
Animals , Naphthoquinones/pharmacology , Trypanosomatina/drug effects , Hydrogen Peroxide/metabolism , Crithidia/drug effects , Crithidia/metabolism , Imines/pharmacology , Oxidation-Reduction/drug effects , Superoxides/metabolism , Trypanosomatina/metabolism
7.
Rev. argent. microbiol ; 21(3/4): 102-10, jul.-dic. 1989. tab
Article in Spanish | LILACS | ID: lil-93728

ABSTRACT

Se ensayaron varias aminoisoxazolil-1,2-naftoquinomas sobre la formación de anión superóxido (O2) y peróxido de hidrógeno (H2O2) por Crithidia fasciculata y Leptomonas seymouri. Los compuestos IVD (N-(5-metil-3-isoxazolil)-4 amino-1,2-naftoquinona; IIID (2-hidroxi-N-(5-metil-3-isoxazoli)-1,4-naftoquinona-4-imina) y IIIE (2-hidroxi-N-(3-metil-5-isoxazolil)-1,4-naftoquinona-4-imina) estimularon la produción de H2O2 mientras que IIIE, IIIC (2-hidroxi-N-(3,5-dimetil-4-isoxazoli)-1,4-naftoquinona-4-imina) y IIIA (2-hidroxi-N-3,4-dimetil-5-isoxazolil)-1,4-naftoquinona-4-imina), pero no IVD, estimularon la formación de O2 en los organismos estudiados. El ciclo redox de las quinona-iminas se verificó por a) la variación de su absorbancia en función de la concentración de oxígeno en el medio de suspensión de las células; b) su reducción anaeróbica, relativamente rápida, con velocidad máxima para IVD; c) la oxidación de los quinoles correspondientes, obtenidos por reducción con borohidruro. C. fasciculata y L. seymouri contenían superóxido dismutasa, enzima esencial para la formación de peróxidos como consecuencia del ciclo redox de las quinonas, y también catalasa, cuya actividad fue seis veces mayor en C. fasciculata. La presencia de catalasa no impidió la formación de H2O2, como producto metabólico de las quinona-iminas. No se pudo demostrar actividad de ascorbato peroxidasa, benzidina peroxidasa o guayacol peroxidasa en los organismos estudiados


Subject(s)
Animals , Hydrogen Peroxide/metabolism , Naphthoquinones/pharmacology , Trypanosomatina/drug effects , Crithidia/drug effects , Crithidia/metabolism , Imines/pharmacology , Oxidation-Reduction/drug effects , Superoxides/metabolism , Trypanosomatina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...