Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1096, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321014

ABSTRACT

Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory condition resulting from monoallelic NLRP3 variants that facilitate IL-1ß production. Although these are gain-of-function variants characterized by hypersensitivity to cell priming, patients with CAPS and animal models of the disease may present inflammatory flares without identifiable external triggers. Here we find that CAPS-associated NLRP3 variants are forming constitutively active inflammasome, which induce increased basal cleavage of gasdermin D, IL-18 release and pyroptosis, with a concurrent basal pro-inflammatory gene expression signature, including the induction of nuclear receptors 4 A. The constitutively active NLRP3-inflammasome of CAPS is responsive to the selective NLRP3 inhibitor MCC950 and its activation is regulated by deubiquitination. Despite their preactivated state, the CAPS inflammasomes are responsive to activation of the NF-κB pathway. NLRP3-inflammasomes with CAPS-associated variants affect the immunometabolism of the myeloid compartment, leading to disruptions in lipids and amino acid pathways and impaired glycolysis, limiting IL-1ß production. In summary, NLRP3 variants causing CAPS form a constitutively active inflammasome inducing pyroptosis and IL-18 release without cell priming, which enables the host's innate defence against pathogens while also limiting IL-1ß-dependent inflammatory episodes through immunometabolism modulation.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Interleukin-18 , Cryopyrin-Associated Periodic Syndromes/genetics , Sulfonamides/pharmacology , Interleukin-1beta/metabolism
2.
Commun Biol ; 5(1): 524, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650327

ABSTRACT

The nucleotide-binding oligomerization and leucine-rich repeat receptor (NLR) protein family consists of important immune sensors that form inflammasomes, a cytosolic multi-protein platform that induces caspase-1 activation and is involved in different inflammatory pathologies. The NLR family pyrin domain containing 6 (NLRP6) is a receptor that can signal by forming inflammasomes, but which can also play an important role without forming inflammasomes. NLRP6 regulates intestinal homeostasis and inflammation, but also is involved in cancer, the nervous system or liver diseases, with both protective and deleterious consequences. In the present article, we review the different roles of NLRP6 in these processes and offer new insights into NLRP6 activation.


Subject(s)
Inflammasomes , Inflammation , Intracellular Signaling Peptides and Proteins , Anti-Inflammatory Agents/pharmacology , Carrier Proteins , Humans , Inflammasomes/metabolism , Inflammation/pathology , Intestines , Intracellular Signaling Peptides and Proteins/metabolism
3.
Front Immunol ; 13: 894470, 2022.
Article in English | MEDLINE | ID: mdl-35663992

ABSTRACT

Inflammation is a tightly coordinated response against bacterial and viral infections, triggered by the production of pro-inflammatory cytokines. SARS-CoV-2 infection induces COVID-19 disease, characterized by an inflammatory response mediated through the activation of the NLRP3 inflammasome, which results in the production of IL-1ß and IL-18 along with pyroptotic cell death. The NLRP3 inflammasome could be also activated by sterile danger signals such as extracellular ATP triggering the purinergic P2X7 receptor. Severe inflammation in the lungs of SARS-CoV-2-infected individuals is associated with pneumonia, hypoxia and acute respiratory distress syndrome, these being the causes of death associated with COVID-19. Both the P2X7 receptor and NLRP3 have been considered as potential pharmacological targets for treating inflammation in COVID-19. However, there is no experimental evidence of the involvement of the P2X7 receptor during COVID-19 disease. In the present study, we determined the concentration of different cytokines and the P2X7 receptor in the plasma of COVID-19 patients and found that along with the increase in IL-6, IL-18 and the IL-1 receptor antagonist in the plasma of COVID-19 patients, there was also an increase in the purinergic P2X7 receptor. The increase in COVID-19 severity and C-reactive protein concentration positively correlated with increased concentration of the P2X7 receptor in the plasma, but not with the IL-18 cytokine. The P2X7 receptor was found in the supernatant of human peripheral blood mononuclear cells after inflammasome activation. Therefore, our data suggest that determining the levels of the P2X7 receptor in the plasma could be a novel biomarker of COVID-19 severity.


Subject(s)
COVID-19 , Inflammasomes , Cytokines/metabolism , Humans , Inflammasomes/metabolism , Inflammation , Interleukin-18/metabolism , Leukocytes, Mononuclear/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7 , SARS-CoV-2 , Severity of Illness Index
4.
Arthritis Rheumatol ; 74(4): 692-699, 2022 04.
Article in English | MEDLINE | ID: mdl-34672126

ABSTRACT

OBJECTIVE: Autoinflammatory diseases are inherited disorders of innate immunity that usually start during childhood. However, several recent reports have described an increasing number of patients with autoinflammatory disease starting in adulthood. This study was undertaken to investigate the underlying cause of a case of late-onset uncharacterized autoinflammatory disease. METHODS: Genetics studies were performed using Sanger sequencing and next-generation sequencing (NGS) methods. In silico, in vitro, and ex vivo analyses were performed to determine the functional consequences of the detected variant. RESULTS: We studied a 57-year-old woman who at the age of 47 years began to have recurrent episodes of fever, myalgias, arthralgias, diffuse abdominal pain, diarrhea, adenopathies, and systemic inflammation, which were relatively well controlled with anti-interleukin-1 (anti-IL-1) drugs. NGS analyses did not detect germline variants in any of the known autoinflammatory disease-associated genes, but they identified the p.Ser171Phe NLRC4 variant in unfractionated blood, with an allele fraction (2-4%) compatible with gene mosaicism. Structural modeling analyses suggested that this missense variant might favor the open, active conformation of the NLRC4 protein, and in vitro and ex vivo analyses confirmed its propensity to oligomerize and activate the NLRC4 inflammasome, with subsequent overproduction of IL-18. CONCLUSION: Our findings indicate that the postzygotic p.Ser171Phe NLRC4 variant is a plausible cause of the disease in the enrolled patient. Functional and structural studies clearly support, for the first time, its gain-of-function behavior, consistent with previously reported NLRC4 pathogenic variants. These novel findings should be considered in the diagnostic evaluation of patients with adult-onset uncharacterized autoinflammatory disease.


Subject(s)
CARD Signaling Adaptor Proteins , Hereditary Autoinflammatory Diseases , CARD Signaling Adaptor Proteins/genetics , Calcium-Binding Proteins , Female , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammasomes , Late Onset Disorders , Middle Aged , Mosaicism
5.
Molecules ; 26(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803783

ABSTRACT

Inflammasomes are immune cytosolic oligomers involved in the initiation and progression of multiple pathologies and diseases. The tight regulation of these immune sensors is necessary to control an optimal inflammatory response and recover organism homeostasis. Prolonged activation of inflammasomes result in the development of chronic inflammatory diseases, and the use of small drug-like inhibitory molecules are emerging as promising anti-inflammatory therapies. Different aspects have to be taken in consideration when designing inflammasome inhibitors. This review summarizes the different techniques that can be used to study the mechanism of action of potential inflammasome inhibitory molecules.


Subject(s)
Inflammasomes/drug effects , Alarmins/immunology , Alarmins/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Computer Simulation , Cytokines/metabolism , Drug Design , Humans , Immunity, Innate , Immunologic Techniques , Inflammasomes/immunology , Inflammasomes/metabolism , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Models, Biological , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Small Molecule Libraries , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...