Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 615(7952): 535-540, 2023 03.
Article in English | MEDLINE | ID: mdl-36859551

ABSTRACT

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Subject(s)
Aquatic Organisms , Phototrophic Processes , Proton Pumps , Rhodopsins, Microbial , Aquatic Organisms/metabolism , Aquatic Organisms/radiation effects , Bacteria/metabolism , Bacteria/radiation effects , Carotenoids/metabolism , Color , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Heterotrophic Processes/radiation effects , Light , Oceans and Seas , Phototrophic Processes/radiation effects , Proton Pumps/metabolism , Proton Pumps/radiation effects , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/radiation effects , Zeaxanthins/metabolism , Zeaxanthins/radiation effects , Lutein/metabolism , Lutein/radiation effects , Metagenome , Lakes
2.
Colloids Surf B Biointerfaces ; 224: 113219, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36848782

ABSTRACT

The design and preparation of new vectors to transport genetic material and increase the transfection efficiency continue being an important research line. Here, a novel biocompatible sugar-based polymer derived from D-mannitol has been synthesized to be used as a gene material nanocarrier in human (gene transfection) and microalga cells (transformation process). Its low toxicity allows its use in processes with both medical and industrial applications. A multidisciplinary study about the formation of polymer/p-DNA polyplexes has been carried out using techniques such as gel electrophoresis, zeta potential, dynamic light scattering, atomic force microscopy, and circular dichroism spectroscopy. The nucleic acids used were the eukaryotic expression plasmid pEGFP-C1 and the microalgal expression plasmid Phyco69, which showed different behaviors. The importance of DNA supercoiling in both transfection and transformation processes was demonstrated. Better results were obtained in microalga cells nuclear transformation than in human cells gene transfection. This was related to the plasmid's conformational changes, in particular to their superhelical structure. It is noteworthy that the same nanocarrier has been used with eukaryotic cells from both human and microalga.


Subject(s)
Eukaryotic Cells , Polymers , Humans , Polymers/chemistry , Mannitol , Transfection , Plasmids/genetics , DNA/chemistry , Genetic Engineering , Genetic Vectors/genetics
3.
Bioprocess Biosyst Eng ; 43(5): 785-796, 2020 May.
Article in English | MEDLINE | ID: mdl-31894389

ABSTRACT

In recent years, there has been increasing consumer interest in carotenoids, particularly of marine sustainable origin with applications in the food, cosmeceutical, nutritional supplement and pharmaceutical industries. For instance, microalgae belonging to the genus Tetraselmis are known for their biotechnologically relevant carotenoid profile. The recently isolated marine microalgal strain Tetraselmis sp. CTP4 is a fast-growing, robust industrial strain, which has successfully been produced in 100-m3 photobioreactors. However, there are no reports on total carotenoid contents from this strain belonging to T. striata/convolutae clade. Although there are several reports on extraction methods targeting chlorophytes, extraction depends on the strength of cell coverings, solvent polarity and the nature of the targeted carotenoids. Therefore, this article evaluates different extraction methods targeting Tetraselmis sp. CTP4, a strain known to contain a mechanically resistant theca. Here, we propose a factorial experimental design to compare extraction of total carotenoids from wet and freeze-dried microalgal biomass using four different solvents (acetone, ethanol, methanol or tetrahydrofuran) in combination with two types of mechanical cell disruption (glass beads or dispersion). The extraction efficiency of the methods was assessed by pigment contents and profiles present in the extracts. Extraction of wet biomass by means of glass bead-assisted cell disruption using tetrahydrofuran yielded the highest amounts of lutein and ß-carotene (622 ± 40 and 618 ± 32 µg g-1 DW, respectively). Although acetone was slightly less efficient than tetrahydrofuran, it is preferable due to its lower costs and toxicity.


Subject(s)
Chlorophyta/chemistry , Lutein , Microalgae/chemistry , beta Carotene , Lutein/chemistry , Lutein/isolation & purification , Microalgae/isolation & purification , beta Carotene/chemistry , beta Carotene/isolation & purification
4.
Int J Mol Sci ; 21(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979077

ABSTRACT

Low stability of transgenes and high variability of their expression levels among the obtained transformants are still pending challenges in the nuclear genetic transformation of microalgae. We have generated a new multicistronic microalgal expression plasmid, called Phyco69, to make easier the large phenotypic screening usually necessary for the selection of high-expression stable clones. This plasmid contains a polylinker region (PLK) where any gene of interest (GOI) can be inserted and get linked, through a short viral self-cleaving peptide to the amino terminus of the aminoglycoside 3'-phosphotransferase (APHVIII) from Streptomyces rimosus, which confers resistance to the antibiotic paromomycin. The plasmid has been validated by expressing a second antibiotic resistance marker, the ShBLE gene, which confers resistance to phleomycin. It has been shown, by RT-PCR and by phenotypic studies, that the fusion of the GOI to the selective marker gene APHVIII provides a simple method to screen and select the transformants with the highest level of expression of both the APHVIII gene and the GOI among the obtained transformants. Immunodetection studies have shown that the multicistronic transcript generated from Phyco69 is correctly processed, producing independent gene products from a common promoter.


Subject(s)
Microalgae/genetics , Plasmids/genetics , Transgenes/genetics , Anti-Bacterial Agents/pharmacology , Genetic Markers/genetics , Kanamycin Kinase/genetics , Paromomycin/pharmacology , Promoter Regions, Genetic/genetics , Streptomyces/drug effects , Streptomyces/genetics , Transformation, Genetic/genetics
5.
Metabolites ; 9(3)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871061

ABSTRACT

Genetic manipulation shows great promise to further boost the productivity of microalgae-based compounds. However, selection of microalgal transformants depends mainly on the use of antibiotics, which have raised concerns about their potential impacts on human health and the environment. We propose the use of a synthetic phytoene desaturase-encoding gene (CRTIop) as a selectable marker and the bleaching herbicide norflurazon as a selective agent for the genetic transformation of microalgae. Bacterial phytoene desaturase (CRTI), which, unlike plant and algae phytoene desaturase (PDS), is not sensitive to norflurazon, catalyzes the conversion of the colorless carotenoid phytoene into lycopene. Although the expression of CRTI has been described to increase the carotenoid content in plant cells, its use as a selectable marker has never been testedin algae or in plants. In this study, a version of the CRTI gene adapted to the codon usage of Chlamydomonas has been synthesized, and its suitability to be used as selectable marker has been shown. The microalgae were transformed by the glass bead agitation method and selected in the presence of norflurazon. Average transformation efficiencies of 550 colonies µg-1 DNA were obtained. All the transformants tested had incorporated the CRTIop gene in their genomes and were able to synthesize colored carotenoids.

6.
Int J Mol Sci ; 17(8)2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27527165

ABSTRACT

Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.


Subject(s)
Depressive Disorder, Major/genetics , Epigenesis, Genetic , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Clinical Trials as Topic , DNA Methylation/drug effects , DNA Methylation/genetics , Depressive Disorder, Major/drug therapy , Epigenesis, Genetic/drug effects , Humans , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...