Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 12: 622360, 2020.
Article in English | MEDLINE | ID: mdl-33584248

ABSTRACT

Neuroinflammation is a risk factor for Alzheimer's disease (AD). We sought to study the glial derangement in AD using diverse experimental models and human brain tissue. Besides classical pro-inflammatory cytokines, we analyzed chitinase 3 like 1 (CHI3L1 or YKL40) and triggering receptor expressed on myeloid cells 2 (TREM2) that are increasingly being associated with astrogliosis and microgliosis in AD, respectively. The SAMP8 mouse model of accelerated aging and AD traits showed elevated pro-inflammatory cytokines and activated microglia phenotype. Furthermore, 6-month-old SAMP8 showed an exacerbated inflammatory response to peripheral lipopolysaccharide in the hippocampus and null responsiveness at the advanced age (for this strain) of 12 months. Gene expression of TREM2 was increased in the hippocampus of transgenic 5XFAD mice and in the cingulate cortex of autosomal dominant AD patients, and to a lesser extent in aged SAMP8 mice and sporadic early-onset AD patients. However, gene expression of CHI3L1 was increased in mice but not in human AD brain samples. The results support the relevance of microglia activation in the pathways leading to neurodegeneration and suggest diverse neuroinflammatory responses according to the AD process. Therefore, the SAMP8 mouse model with marked alterations in the dynamics of microglia activation and senescence may provide a complementary approach to transgenic mouse models for the study of the neuroinflammatory mechanisms underlying AD risk and progression.

2.
Neurobiol Aging ; 46: 169-79, 2016 10.
Article in English | MEDLINE | ID: mdl-27498054

ABSTRACT

Presenilin 1 (PSEN1) mutations are the main cause of monogenic Alzheimer's disease. We studied the functional effects of the mutation K239N, which shows incomplete penetrance at the age of 65 years and compared it with the more aggressive mutation E120G. We engineered stable cell lines expressing human PSEN1 wild type or with K239N or E120G mutations. Both mutations induced dysfunction of γ-secretase in the processing of amyloid-ß protein precursor, leading to an increase in the amyloid ß42/amyloid ß40 ratio. Analysis of homeostatic mechanisms showed that K239N induced lower basal and hydrogen peroxide induced intracellular levels of reactive oxygen species than E120G. Similarly, K239N induced lower vulnerability to apoptosis by hydrogen peroxide injury than E120G. Accordingly, the proapoptotic signaling pathways c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase maintained PSEN1-mediated negative regulation in K239N but not in E120G-bearing cells. Furthermore, the activation of the prosurvival signaling pathways mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt was lower in E120G-bearing cells. Therefore, preservation of mechanisms regulating cell responses independent of amyloid-ß protein precursor processing may account for the milder phenotype induced by the PSEN1 K239N mutation.


Subject(s)
Cell Survival/genetics , Mutation/genetics , Phenotype , Presenilin-1/genetics , Presenilin-1/physiology , Aged , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Apoptosis , Cell Line , Humans , Hydrogen Peroxide , JNK Mitogen-Activated Protein Kinases/physiology , Peptide Fragments/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species , Signal Transduction , p38 Mitogen-Activated Protein Kinases/physiology
3.
Aging Cell ; 14(3): 334-44, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25711920

ABSTRACT

Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology.


Subject(s)
Aging/metabolism , Astrocytes/metabolism , Caloric Restriction , Animals , Antioxidants/metabolism , Caloric Restriction/methods , Cells, Cultured , Mice , Mitochondria/metabolism , Neurons/metabolism , Oxidative Stress/physiology
4.
J Neuroinflammation ; 11: 126, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25051986

ABSTRACT

BACKGROUND: Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. METHODS: To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. RESULTS: P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-ß and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. CONCLUSIONS: Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.


Subject(s)
Aging/genetics , Gene Expression Regulation/genetics , Nerve Tissue Proteins/metabolism , Repressor Proteins/metabolism , Analysis of Variance , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Brain/anatomy & histology , Brain/cytology , Brain/drug effects , Co-Repressor Proteins , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Encephalitis/chemically induced , Encephalitis/pathology , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation/drug effects , Histones/metabolism , Interleukin-6/blood , Lipopolysaccharides/pharmacology , Male , Methylation/drug effects , Mice , Mice, Inbred Strains , Nerve Tissue Proteins/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...