Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920075

ABSTRACT

The world's oceans are one of the most valuable sources of biodiversity and resources on the planet, although there are areas where the marine ecosystem is threatened by human activities. Marine protected areas (MPAs) are distinctive spaces protected by law due to their unique characteristics, such as being the habitat of endangered marine species. Even with this protection, there are still illegal activities such as poaching or anchoring that threaten the survival of different marine species. In this context, we propose an autonomous surface vehicle (ASV) model system for the surveillance of marine areas by detecting and recognizing vessels through artificial intelligence (AI)-based image recognition services, in search of those carrying out illegal activities. Cloud and edge AI computing technologies were used for computer vision. These technologies have proven to be accurate and reliable in detecting shapes and objects for which they have been trained. Azure edge and cloud vision services offer the best option in terms of accuracy for this task. Due to the lack of 4G and 5G coverage in offshore marine environments, it is necessary to use radio links with a coastal base station to ensure communications, which may result in a high response time due to the high latency involved. The analysis of on-board images may not be sufficiently accurate; therefore, we proposed a smart algorithm for autonomy optimization by selecting the proper AI technology according to the current scenario (SAAO) capable of selecting the best AI source for the current scenario in real time, according to the required recognition accuracy or low latency. The SAAO optimizes the execution, efficiency, risk reduction, and results of each stage of the surveillance mission, taking appropriate decisions by selecting either cloud or edge vision models without human intervention.


Subject(s)
Ecosystem , Robotics , Artificial Intelligence , Biodiversity , Conservation of Natural Resources , Humans , Oceans and Seas
2.
Sensors (Basel) ; 18(10)2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30336566

ABSTRACT

Apart from their ecological value, the world's oceans are among the planet's most valuable resources, a rich source of food and wealth and in urgent need of protection. This article describes BUSCAMOS-RobObs, a robot-based observatory, consisting of an autonomous solar-powered marine robot with specialized sensing systems designed to carry out long-term observation missions in the inland sea of the Mar Menor in southeastern Spain. This highly specialised device is unique because it has the capacity to anchor itself to the seabed and become a "buoy", either to take measurements at specific points or to recharge its batteries. It thus avoids drifting and possible accidents in the buoy mode, especially near the coast, and resumes monitoring tasks when the required energy levels are reached. The robot is equipped with a broad range of sensors, including side scan sonar, sub-bottom sonar, laser systems, ultrasound sonar, depth meters, a multi-parametric probe and a GPS, which can collect georeferenced oceanic data. Although various types of autonomous vehicles have been described in the literature, they all have limited autonomy (even in the long term) as regards operational time and covering the seabed. The article describes a permanent monitoring mission in the Mar Menor, with a combination of solar energy and a decision-making strategy as regards the optimum route to be followed. The energy and mission simulation results, as well as an account of actual monitoring missions are also included.

SELECTION OF CITATIONS
SEARCH DETAIL
...