Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 36(7): 901-10, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22976820

ABSTRACT

A pilot-scale ultrafiltration membrane bioreactor (MBR) was used for the aerobic treatment of urban wastewater in four experimental stages influenced by seasonal temperature and different sets of operation conditions. The structure of the ammonia-oxidizing bacteria (AOB) community was profiled by temperature gradient gel electrophoresis (TGGE), based on the amplification and separation of partial ammonia-monoxygenase subunit A (amoA) genes. Canonical correspondence analysis revealed that temperature, hydraulic retention time and percentage of ammonia removal had a significant effect on the fingerprints of AOB communities. Phylogenetic analysis conducted on amoA/AmoA sequences of reamplified TGGE bands showed, however, that closely related ammonia-oxidizing populations inhabited the sludge of the MBR in all experimental stages. Nitrosomonas cluster 7 populations (N. europaea-N. eutropha cluster) prevailed under all conditions tested, even when the MBR was operated under complete biomass retention or at low temperatures, suggesting that the high ammonia concentrations in the system were determinant to select r-strategist AOB.


Subject(s)
Ammonia/metabolism , Bioreactors , Membranes, Artificial , Nitrosomonas/metabolism , Wastewater , Water Pollutants, Chemical/metabolism , Base Sequence , DNA Primers , Denaturing Gradient Gel Electrophoresis , Oxidation-Reduction , Polymerase Chain Reaction , Urbanization
2.
Bioresour Technol ; 101(7): 2096-105, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19948397

ABSTRACT

A cultivation independent approach (PCR-TGGE) was used to evaluate the occurrence of Archaea in four wastewater treatments based on technologies other than activated sludge, and to comparatively analyze their community structure. TGGE fingerprints (based on partial archaeal 16S-rRNA amplicons) were obtained from sludge samples taken from a pilot-scale aerated MBR fed with urban wastewater and operated under two different sets of conditions (MBR1 and MBR2 treatments), and also from biofilms sampled from two pilot-scale submerged biofilters (SBs) consisting of one aerated and one anoxic column each, fed with urban (USB treatment) or industrial (ISB treatment) wastewater, respectively. Analysis of TGGE fingerprints revealed clear and significant differences of the community structure of Archaea between the wastewater treatments studied, primarily according to wastewater origin and the type of technology. Thirty-two different band classes were detected among the 23 sludge and biofilm samples analyzed, from which five were selected as dominant or distinctive of the four treatments studied. Sixteen predominant TGGE bands were identified, revealing that all of them were related to methanogenic Archaea. Neither other Euryarchaeota groups nor Crenarchaeota members were identified amongst the 16S-rRNA fragments sequenced from separated TGGE bands.


Subject(s)
Archaea/growth & development , Archaea/genetics , Bioreactors/microbiology , Filtration/instrumentation , Membranes, Artificial , Waste Disposal, Fluid/instrumentation , Water Purification/instrumentation , Biodegradation, Environmental , Cluster Analysis , Electrophoresis, Agar Gel , Genes, Archaeal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
3.
Bioresour Technol ; 101(2): 696-704, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19748774

ABSTRACT

Phosphatases, glucosidase, protease, esterase and dehydrogenase activities in a MBR (membrane bioreactor) system equipped with ultrafiltration membranes for the treatment of real urban wastewater were measured at different volatile suspended solid (VSS) concentrations, total suspended solid (TSS) concentrations, hydraulic retention times (HRT), temperatures and inflow rates. The results showed the capacity of the MBR system to remove COD and BOD(5) at TSS between 7200 and 13,300 mg/L; HRT values of 8.05 and 15.27 h; inflow rates of 14.67 and 27.81 L/h; and temperatures between 4 and 27 degrees C. The enzymatic activities are influenced by increases in VSS and TSS concentrations. These results suggest that the ability to get adapted to environmental changes of the bacterial populations and their microbial enzymatic activities is essential to understand the biological processes that occur in MBR systems and crucial for proper urban wastewater treatment when using MBR technologies.


Subject(s)
Enzymes/metabolism , Sewage , Water Pollutants/isolation & purification , Pilot Projects
4.
Sci Total Environ ; 407(13): 3994-4003, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19394070

ABSTRACT

A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community in the sludge and its ability to get adapted to environmental changes play an important role for the stable performance of MBRs.


Subject(s)
Aerobiosis , Bioreactors , Membranes, Artificial , Water Microbiology , Pilot Projects , Polymerase Chain Reaction , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Ultrafiltration
5.
Appl Microbiol Biotechnol ; 73(6): 1441-51, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17043829

ABSTRACT

A pilot-scale submerged membrane bioreactor was used for the treatment of domestic wastewater in order to study the influence of the variations in the concentration of volatile suspended solids (VSS) on the enzymatic activities (acid and alkaline phosphatases, glucosidase, protease, esterase, and dehydrogenase) and biodiversity of the bacterial community in the sludge. The influence of VSS concentration was evaluated in two separated experiments, which were carried out in two different seasons of the year (experiment 1 through spring-summer and experiment 2 through autumn-winter). Cluster analysis of the temperature gradient gel electrophoresis (TGGE) profiles demonstrated that the community composition was significantly different in both experiments. Within the same experiment, the bacterial community experienced sequential shifts as the biomass accumulated, as shown by the evolution of the population profiles through time as VSS concentration increased. All enzymatic activities studied were significantly lower during experiment 2, except for glucosidase. Concentrations of VSS over 8 g/l induced a strong descent of all enzymatic activities, which overlapped with a significant modification of the community composition. Sequences of the major TGGE bands were identified as representatives of the Alpha-proteobacteria, filamentous bacteria (Thiotrix), and nitrite oxidizers (Nitrospira). Some sequences which were poorly related to any validated bacterial taxon were obtained.


Subject(s)
Bacteria/growth & development , Biodiversity , Bioreactors/microbiology , Enzymes/metabolism , Waste Disposal, Fluid/methods , Bacteria/classification , Bacteria/enzymology , Cluster Analysis , Electrophoresis/methods , Sewage/microbiology , Waste Disposal, Fluid/instrumentation
6.
Biochem Soc Trans ; 34(Pt 1): 165-8, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16417512

ABSTRACT

The bacterial diversity of a submerged filter, used for the removal of ammonia and phenol from an industrial wastewater with high salinity, was studied by a cultivation-independent approach based on PCR/TGGE (temperature-gradient gel electrophoresis). The wastewater treatment plant (laboratory scale) combined the nitrification and denitrification processes and consisted of two separated columns (one anoxic and one aerated) connected through a valve. The spatial diversity of bacterial communities in the plant biofilms was analysed by taking samples at four different heights in the system. TGGE profiles of PCR-amplified sequences of the 16 S rRNA gene (V3-hypervariable region) showed significant variations of the bacterial diversity, mainly depending on the concentration of O(2) along the system. Several bands separated by TGGE were reamplified and sequenced, in order to explore the composition of the microbial communities in the biofilms. Most of the sequenced bands (10 out of 13) were closely related to the 16 S rRNA gene of marine alpha-proteobacteria, mainly grouping in the periphery of the genus Roseobacter. Other sequences were related to those of gamma-proteobacteria, the nitrite oxidizer Nitrospira marina and anaerobic phenol-degrading bacteria of the Desulfobacteraceae.


Subject(s)
Ammonia , Biofilms , Filtration/methods , Phenols , Waste Disposal, Fluid , DNA, Bacterial , Proteobacteria/genetics , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...