Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-18988106

ABSTRACT

In order to evaluate the effect of flux on membrane fouling, the performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated under real conditions at different flux rates. The pilot plant was located at the wastewater treatment plant of the city of Granada (Spain). Influent used in the experiments came from the primary settling tank. Assays carried out under different operating conditions indicated that dTMP/dt increased in accordance with the increase in flux. The results showed a significant impact on the rate of transmembrane pressure, while the behavior of membrane fouling was logarithmic with respect to the flux. These findings could be of some importance for understanding the behavior of the membrane, since over 20.57 L m(-2) h(-1) the flux rate produced a significant increase in transmembrane pressure. The data therefore suggest that an increase in the net flux significantly affects membrane fouling.


Subject(s)
Bioreactors , Industrial Waste , Membranes, Artificial , Water Pollutants , Ultrafiltration/instrumentation
2.
Article in English | MEDLINE | ID: mdl-17558781

ABSTRACT

The performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated at different mixed liquor suspended solid (MLSS) concentrations (3069, 4314 and 6204 mg/L). The pilot plant was located in the wastewater treatment plant of the city of Granada (Puente de los Vados, Granada, Spain), which receives the wastewater of the milk from the dairy industry of Granada. The results showed the capacity of the MBR systems to remove organic material (COD and BOD5), suspended solids, turbidity, color and microbial indicators such as E. coli and coliphages. Therefore, the results suggest that the transmembrane pressure (TMP) was influence by the MLSS concentration assayed. However, an increase in the MLSS concentration increases the nitrification processes and consequently the amount of NO3- in permeate.


Subject(s)
Bioreactors , Dairying , Membranes, Artificial , Sewage/analysis , Waste Disposal, Fluid/methods , Waste Management/methods , Bacteria , Spain , Ultrafiltration , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...