Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689531

ABSTRACT

The virulence of Staphylococcus aureus, a multi-drug resistant pathogen, notably depends on the expression of the phenol soluble modulins α3 (PSMα3) peptides, able to self-assemble into amyloid-like cross-α fibrils. Despite remarkable advances evidencing the crucial, yet insufficient, role of fibrils in PSMα3 cytotoxic activities towards host cells, the relationship between its molecular structures, assembly propensities, and modes of action remains an open intriguing problem. In this study, combining atomic force microscopy (AFM) imaging and infrared spectroscopy, we first demonstrated in vitro that the charge provided by the N-terminal capping of PSMα3 alters its interactions with model membranes of controlled lipid composition without compromising its fibrillation kinetics or morphology. N-formylation eventually dictates PSMα3-membrane binding via electrostatic interactions with the lipid head groups. Furthermore, PSMα3 insertion within the lipid bilayer is favoured by hydrophobic interactions with the lipid acyl chains only in the fluid phase of membranes and not in the gel-like ordered domains. Strikingly, our real-time AFM imaging emphasizes how intermediate protofibrillar entities, formed along PSMα3 self-assembly and promoted at the membrane interface, likely disrupt membrane integrity via peptide accumulation and subsequent membrane thinning in a peptide concentration and lipid-dependent manner. Overall, our multiscale and multimodal approach sheds new light on the key roles of N-formylation and intermediate self-assembling entities, rather than mature fibrils, in dictating deleterious interactions of PSMα3 with membrane lipids, likely underscoring its ultimate cellular toxicity in vivo, and in turn S. aureus pathogenesis.

2.
Nanoscale ; 15(28): 11972-11980, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37395420

ABSTRACT

Defect engineering in two-dimensional materials expands the realm of their applications in catalysis, nanoelectronics, sensing, and beyond. As limited tools are available to explore nanoscale functional properties in non-vacuum environments, theoretical modeling provides some invaluable insight into the effect of local deformations to deepen the understanding of experimental signals acquired by nanoscale chemical imaging. We demonstrate the controlled creation of nanoscale strained defects in hexagonal boron nitride (h-BN) using atomic force microscopy and infrared (IR) light under an inert environment. Nanoscale IR spectroscopy reveals the broadening of the in-plane phonon (E1u) mode of h-BN during defect formation while density functional theory-based calculations and molecular dynamics provide quantification of the tensile and compressive strain in the deformation.

3.
Int J Pharm X ; 5: 100172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36861067

ABSTRACT

In this study, we designed aptamer-based self-assemblies for the delivery of quinine. Two different architectures were designed by hybridizing quinine binding aptamers and aptamers targeting Plasmodium falciparum lactate dehydrogenase (PfLDH): nanotrains and nanoflowers. Nanotrains consisted in controlled assembly of quinine binding aptamers through base-pairing linkers. Nanoflowers were larger assemblies obtained by Rolling Cycle Amplification of a quinine binding aptamer template. Self-assembly was confirmed by PAGE, AFM and cryoSEM. The nanotrains preserved their affinity for quinine and exhibited a higher drug selectivity than nanoflowers. Both demonstrated serum stability, hemocompatibility, low cytotoxicity or caspase activity but nanotrains were better tolerated than nanoflowers in the presence of quinine. Flanked with locomotive aptamers, the nanotrains maintained their targeting ability to the protein PfLDH as analyzed by EMSA and SPR experiments. To summarize, nanoflowers were large assemblies with high drug loading ability, but their gelating and aggregating properties prevent from precise characterization and impaired the cell viability in the presence of quinine. On the other hand, nanotrains were assembled in a selective way. They retain their affinity and specificity for the drug quinine, and their safety profile as well as their targeting ability hold promise for their use as drug delivery systems.

4.
Materials (Basel) ; 16(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36984320

ABSTRACT

The production of bio-based composites with enhanced characteristics constitutes a strategic action to minimize the use of fossil fuel resources. The mechanical performances of these materials are related to the specific properties of their components, as well as to the quality of the interface between the matrix and the fibers. In a previous research study, it was shown that the polarity of the matrix played a key role in the mechanisms of fiber breakage during processing, as well as on the final properties of the composite. However, some key questions remained unanswered, and new investigations were necessary to improve the knowledge of the interactions between a lignocellulosic material and a polar matrix. In this work, for the first time, atomic force microscopy based on force spectroscopy measurements was carried out using functionalized tips to characterize the intermolecular interactions at the single molecule level, taking place between poly(butylene succinate) and four different plant fibers. The efficiency of the tip functionalization was checked out by scanning electron microscopy and energy-dispersive X-ray spectroscopy, whereas the fibers chemistry was characterized by Fourier-transform infrared spectroscopy. Larger interactions at the nanoscale level were found between the matrix and hypolignified fibers compared to lignified ones, as in control experiments on single lignocellulosic polymer films. These results could significantly aid in the design of the most appropriate composite composition depending on its final use.

6.
Int J Pharm ; 632: 122552, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36587777

ABSTRACT

This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the author, editor and publisher. The publisher regrets that an error occurred during the publication of this paper, which was intended to be published in International Journal of Pharmaceutics: X (not International Journal of Pharmaceutics). This error bears no reflection on the scientific content of this article or its authors. The publisher apologizes to the readers for this unfortunate error.

7.
Cell Adh Migr ; 17(1): 1-13, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36503402

ABSTRACT

Cutaneous melanoma is a cancer with a very poor prognosis mainly because of metastatic dissemination and therefore a deregulation of cell migration. Current therapies can benefit from complementary medicines as supportive care in oncology. In our study, we show that a dynamized ultra-low dilution of Ruta Graveolens leads to an in vitro inhibition of migration on fibronectin of B16F10 melanoma cells, as well as a decrease in metastatic dissemination in vivo. These effects appear to be due to a disruption of plasma membrane organization, with a change in cell and membrane stiffness, associated with a disorganization of the actin cytoskeleton and a modification of the lipid composition of the plasma membrane. Together, these results demonstrate, in in vitro and in vivo models of cutaneous melanoma, an anti-cancer and anti-metastatic activity of ultra-low dynamized dilution of Ruta graveolens and reinforce its interest as complementary medicine in oncology.


Subject(s)
Melanoma , Ruta , Skin Neoplasms , Humans , Cell Membrane , Plant Extracts/pharmacology , Melanoma, Cutaneous Malignant
8.
Biochim Biophys Acta Biomembr ; 1865(2): 184084, 2023 02.
Article in English | MEDLINE | ID: mdl-36368636

ABSTRACT

The lipid composition of cellular membranes and the balance between the different lipid components can be impacted by aging, certain pathologies, specific diets and other factors. This is the case in a subgroup of individuals with psychiatric disorders, such as schizophrenia, where cell membranes of patients have been shown to be deprived in polyunsaturated fatty acids (PUFAs), not only in brain areas where the target receptors are expressed but also in peripheral tissues. This PUFA deprivation thus represents a biomarker of such disorders that might impact not only the interaction of antipsychotic medications with these membranes but also the activation and signaling of the targeted receptors embedded in the lipid membrane. Therefore, it is crucial to understand how PUFAs levels alterations modulate the different physical properties of membranes. In this paper, several biophysical approaches were combined (Laurdan fluorescence spectroscopy, atomic force microscopy, differential scanning calorimetry, molecular modeling) to characterize membrane properties such as fluidity, elasticity and thickness in PUFA-enriched cell membranes and lipid model systems reflecting the PUFA imbalance observed in some diseases. The impact of both the number of unsaturations and their position along the chain on the above properties was investigated. Briefly, data revealed that PUFA presence in membranes increases membrane fluidity, elasticity and flexibility and decreases its thickness and order parameter. Both the level of unsaturation and their position affect these membrane properties.


Subject(s)
Fatty Acids, Unsaturated , Membrane Fluidity , Humans , Fatty Acids, Unsaturated/chemistry , Membranes , Cell Membrane/metabolism , Microscopy, Atomic Force
9.
Nano Lett ; 22(20): 8196-8202, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36122311

ABSTRACT

Tailoring two-dimensional (2D) materials functionalities is closely intertwined with defect engineering. Conventional methods do not offer the necessary control to locally introduce and study defects in 2D materials, especially in non-vacuum environments. Here, an infrared pulsed laser focused under the metallic tip of an atomic force microscope cantilever is used to create nanoscale defects in hexagonal boron nitride (h-BN) and to subsequently investigate the induced lattice distortions by means of nanoscale infrared (nano-IR) spectroscopy. The effects of incoming light power, exposure time, and environmental conditions on the defected regions are considered. Nano-IR spectra complement the morphology maps by revealing changes in lattice vibrations that distinguish the defects formed under various environments. This work introduces versatile experimental avenues to trigger and probe local reactions that functionalize 2D materials through defect creation with a higher level of precision for applications in sensing, catalysis, optoelectronics, quantum computing, and beyond.

10.
Biomater Sci ; 10(17): 4978-4996, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35801706

ABSTRACT

The aim of this study is to investigate the impact of the stiffness and stress relaxation of poly(acrylamide-co-acrylic acid) hydrogels on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Varying the amount of the crosslinker and the ratio between the monomers enabled the obtainment of hydrogels with controlled mechanical properties, as characterized using unconfined compression and atomic force microscopy (AFM). Subsequently, the surface of the hydrogels was functionalized with a mimetic peptide of the BMP-2 protein, in order to favor the osteogenic differentiation of hMSCs. Finally, hMSCs were cultured on the hydrogels with different stiffness and stress relaxation: 15 kPa - 15%, 60 kPa - 15%, 140 kPa - 15%, 100 kPa - 30%, and 140 kPa - 70%. The cells on hydrogels with stiffnesses from 60 kPa to 140 kPa presented a star-like shape, typical of osteocytes, which has only been reported by our group for two-dimensional substrates. Then, the extent of hMSC differentiation was evaluated by using immunofluorescence and by quantifying the expression of both osteoblast markers (Runx-2 and osteopontin) and osteocyte markers (E11, DMP1, and sclerostin). It was found that a stiffness of 60 kPa led to a higher expression of osteocyte markers as compared to stiffnesses of 15 and 140 kPa. Finally, the strongest expression of osteoblast and osteocyte differentiation markers was observed for the hydrogel with a high relaxation of 70% and a stiffness of 140 kPa.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Cell Differentiation , Cells, Cultured , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Osteoblasts
11.
Gels ; 8(3)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35323295

ABSTRACT

Hyaluronic acid (HA) was functionalized with a series of amino synthons (octylamine, polyethylene glycol amine, trifluoropropyl amine, rhodamine). Sodium hyaluronate (HAs) was first converted into its protonated form (HAp) and the reaction was conducted in DMSO by varying the initial ratio (-NH2 (synthon)/COOH (HAp)). HA derivatives were characterized by a combination of techniques (FTIR, 1H NMR, 1D diffusion-filtered 19F NMR, DOSY experiments), and degrees of substitution (DSHA) varying from 0.3% to 47% were determined, according to the grafted synthon. Nanohydrogels were then obtained by ionic gelation between functionalized hyaluronic acids and chitosan (CS) and tripolyphosphate (TPP) as a cross-linker. Nanohydrogels for which HA and CS were respectively labeled by rhodamine and fluorescein which are a fluorescent donor-acceptor pair were subjected to FRET experiments to evaluate the stability of these nano-assemblies.

12.
Front Mol Biosci ; 8: 760950, 2021.
Article in English | MEDLINE | ID: mdl-34901154

ABSTRACT

The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations and macromolecular crowding in the mechanics and organization of actin bundles have been independently established, how changing both intracellular environmental conditions influence bundle mechanics at the nanoscale has yet to be established. Here we investigate how electrostatics and depletion interactions modulate the relative Young's modulus and height of actin bundles using atomic force microscopy. Our results demonstrate that cation- and depletion-induced bundles display an overall reduction of relative Young's modulus depending on either cation or crowding concentrations. Furthermore, we directly measure changes to cation- and depletion-induced bundle height, indicating that bundles experience alterations to filament packing supporting the reduction to relative Young's modulus. Taken together, our work suggests that electrostatic and depletion interactions may act counteractively, impacting actin bundle nanomechanics and organization.

13.
Sci Rep ; 11(1): 17827, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497312

ABSTRACT

Because of their long lifespan, matrix proteins of the vascular wall, such as elastin, are subjected to molecular aging characterized by non-enzymatic post-translational modifications, like carbamylation which results from the binding of cyanate (mainly derived from the dissociation of urea) to protein amino groups. While several studies have demonstrated a relationship between increased plasma concentrations of carbamylated proteins and the development of cardiovascular diseases, molecular mechanisms explaining the involvement of protein carbamylation in these pathological contexts remain to be fully elucidated. The aim of this work was to determine whether vascular elastic fibers could be carbamylated, and if so, what impact this phenomenon would have on the mechanical properties of the vascular wall. Our experiments showed that vascular elastin was carbamylated in vivo. Fiber morphology was unchanged after in vitro carbamylation, as well as its sensitivity to elastase degradation. In mice fed with cyanate-supplemented water in order to increase protein carbamylation within the aortic wall, an increased stiffness in elastic fibers was evidenced by atomic force microscopy, whereas no fragmentation of elastic fiber was observed. In addition, this increased stiffness was also associated with an increase in aortic pulse wave velocity in ApoE-/- mice. These results provide evidence for the carbamylation of elastic fibers which results in an increase in their stiffness at the molecular level. These alterations of vessel wall mechanical properties may contribute to aortic stiffness, suggesting a new role for carbamylation in cardiovascular diseases.


Subject(s)
Aorta/physiology , Elastic Tissue/metabolism , Elastin/metabolism , Vascular Stiffness/physiology , Animals , Aorta/drug effects , Cattle , Cyanates/pharmacology , Elastic Tissue/drug effects , Mice , Protein Carbamylation/drug effects , Vascular Stiffness/drug effects
14.
Nanoscale ; 13(2): 1124-1133, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33399602

ABSTRACT

Arterial stiffness is a complex process affecting the aortic tree that significantly contributes to cardiovascular diseases (systolic hypertension, coronary artery disease, heart failure or stroke). This process involves a large extracellular matrix remodeling mainly associated with elastin content decrease and collagen content increase. Additionally, various chemical modifications that accumulate with ageing have been shown to affect long-lived assemblies, such as elastic fibers, that could affect their elasticity. To precisely characterize the fiber changes and the evolution of its elasticity with ageing, high resolution and multimodal techniques are needed for precise insight into the behavior of a single fiber and its surrounding medium. In this study, the latest developments in atomic force microscopy and the related nanomechanical modes are used to investigate the evolution and in a near-physiological environment, the morphology and elasticity of aorta cross sections obtained from mice of different ages with an unprecedented resolution. In correlation with more classical approaches such as pulse wave velocity and fluorescence imaging, we demonstrate that the relative Young's moduli of elastic fibers, as well as those of the surrounding areas, significantly increase with ageing. This nanoscale characterization presents a new view on the stiffness process, showing that, besides the elastin and collagen content changes, elasticity is impaired at the molecular level, allowing a deeper understanding of the ageing process. Such nanomechanical AFM measurements of mouse tissue could easily be applied to studies of diseases in which elastic fibers suffer pathologies such as atherosclerosis and diabetes, where the precise quantification of fiber elasticity could better follow the fiber remodeling and predict plaque rupture.


Subject(s)
Aorta , Pulse Wave Analysis , Aging , Animals , Elasticity , Mice , Microscopy, Atomic Force
15.
Nanoscale Adv ; 3(14): 4244-4253, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-36132846

ABSTRACT

One of the hallmarks of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, resulting from the aggregation of the tubulin associated unit protein (Tau), which holds a vital role in maintaining neuron integrity in a healthy brain. The development of such aggregates and their deposition in the brain seem to correlate with the onset of neurodegeneration processes. The misfolding and subsequent aggregation of the protein into paired helical filaments that further form the tangles, lead to dysfunction of the protein with neuronal loss and cognitive decline. The aggregation of the protein then seems to be a causative factor of the neurodegeneration associated with AD. The hypothesis of an involvement of the membrane in modulating the misfolding and assembly of Tau into paired helical filaments attracts increasing interests. To provide more insight about how lipids can modulate the interactions with Tau, we have conducted a comprehensive Atomic Force Microscopy (AFM) study involving supported lipid bilayers of controlled compositions with the Tau microtubule-binding construct K18. Particularly, the effects of zwitterionic and negatively charged phospholipids on the interaction have been investigated. Deleterious solubilization effects have been evidenced on fluid zwitterionic membranes as well as an inability of K18 to fragment gel phases. The role of negative lipids in the aggregation of the peptide and the particular ability of phosphatidylinositol-4,5-bisphosphate (PIP2) in inducing K18 fibrillization on membranes are also reported.

16.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33265958

ABSTRACT

An electrodeposition method for the growth of homogeneous silicon-terbium nanowires (NWs) with green light emission is described. The method involves template-assisted electrochemical co-deposition of Si/Tb NWs with 90-nm diameter from an electrolyte bath containing Si and Tb precursors in an ionic liquid (IL). This method of deposition is advantageous over other conventional techniques as it is relatively simple and cost-effective and avoids harsh deposition conditions. The deposited NWs are of uniform dimensions with homogeneous composition incorporating 10% of Tb and exhibit intense room temperature (RT) luminescence in the visible range due to Tb emission. These results were confirmed by combining classical characterization such as scanning electron microscopy (SEM) and photoluminescence (PL) performed on an assembly of NWs with spatially resolved experiments such as transmission electron microscopy (TEM) and cathodoluminescence (CL). This electrodeposition method provides an alternative and extremely simple approach for depositing silicon-rare earth nanostructures for optical and sensing applications.

17.
Front Mol Biosci ; 7: 571696, 2020.
Article in English | MEDLINE | ID: mdl-33033718

ABSTRACT

Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aß1 - 42 peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aß1 - 42 peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aß1 - 42 and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides. Despite the increasing amount of information on AD associated amyloids and their toxicity, the molecular mechanisms involved still remain unclear and require in-depth investigation at the local scale to clearly decipher the role of the sequence of the amyloid peptides, of their secondary structures, of their oligomeric states, and of their interactions with lipid membranes. In this original study, through the use of Atomic Force Microscopy (AFM) related-techniques, high-speed AFM and nanoInfrared AFM, we tried to unravel at the nanoscale the link between aggregation state, structure and interaction with membranes in the amyloid/membrane interaction. Using three mutants of Aß peptides, L34T, oG37C, and WT Aß1 - 42 peptides, with differences in morphology, structure and assembly process, as well as model lipidic membranes whose composition and structure allow interactions with the peptides, our AFM study coupling high spatial and temporal resolution and nanoscale structure information clearly evidences a local correlation between the secondary structure of the peptides, their fibrillization kinetics and their interactions with model membranes. Membrane disruption is associated to small transient oligomeric entities in the early stages of aggregation that strongly interact with the membrane, and present an antiparallel ß-sheet secondary structure. The strong effect on membrane integrity that exists when these oligomeric Aß1 - 42 peptides interact with membranes of a particular composition could be a lead for therapeutic studies.

18.
Nanomedicine ; 29: 102256, 2020 10.
Article in English | MEDLINE | ID: mdl-32615337

ABSTRACT

In bone tissue engineering, stem cells are known to form inhomogeneous bone-like nodules on a micrometric scale. Herein, micro- and nano-infrared (IR) micro-spectroscopies were used to decipher the chemical composition of the bone-like nodule. Histological and immunohistochemical analyses revealed a cohesive tissue with bone-markers positive cells surrounded by dense mineralized type-I collagen. Micro-IR gathered complementary information indicating a non-mature collagen at the top and periphery and a mature collagen within the nodule. Atomic force microscopy combined to IR (AFM-IR) analyses showed distinct spectra of "cell" and "collagen" rich areas. In contrast to the "cell" area, spectra of "collagen" area revealed the presence of carbohydrate moieties of collagen and/or the presence of glycoproteins. However, it was not possible to determine the collagen maturity, due to strong bands overlapping and/or possible protein orientation effects. Such findings could help developing protocols to allow a reliable characterization of in vitro generated complex bone tissues.


Subject(s)
Bone Development/drug effects , Collagen/genetics , Durapatite/therapeutic use , Tissue Engineering , Collagen/chemistry , Humans , Microscopy, Atomic Force , Stem Cell Transplantation , Stem Cells/drug effects
19.
Biomacromolecules ; 21(8): 3163-3175, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32584549

ABSTRACT

A new biobased material based on an original strategy using lignin model compounds as natural grafting additive on a nanocellulose surface through in situ polymerization of coniferyl alcohol by the Fenton reaction at two pH values was investigated. The structural and morphological properties of the materials at the nanoscale were characterized by a combination of analytical methods, including Fourier transform infrared spectroscopy, liquid chromatography combined with mass spectrometry, nuclear molecular resonance spectroscopy, electron paramagnetic resonance spectroscopy, water sorption capacity by dynamic vapor sorption, and atomic force microscopy (topography and indentation modulus measurements). Finally, the usage properties, such as antioxidant properties, were evaluated in solution and the nanostructured casted films by radical 2,2'-diphenyl-1-picrylhydrazyl (DPPH•) scavenging tests. We demonstrate the structure-function relationships of these advanced CNC-lignin films and describe their dual functionalities and characteristics, namely, their antioxidant properties and the presence of persistent phenoxy radicals within the material.


Subject(s)
Cellulose , Nanocomposites , Antioxidants , Phenols , Polymerization , Spectroscopy, Fourier Transform Infrared
20.
Int J Biol Macromol ; 147: 1064-1075, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31743709

ABSTRACT

Lignocellulosic biomass is receiving growing interest as a renewable source of biofuels, chemicals and materials. Lignocellulosic polymers and cellulose nanocrystals (CNCs) present high added-value potential in the nanocomposite field, but some issues have to be solved before large-scale applications. Among them, the interaction between polymers at the nanoscale and the effect of the external parameters on the mechanical properties have to be more precisely investigated. The present study aims at evaluating how the relative humidity affects the reduced Young's modulus of lignocellulosic films prepared with crystalline cellulose, glucomannan, xylan and lignin and how relative humidity changes their nanoscale adhesion properties with CNCs. Using atomic force microscopy and force volume experiments with CNC-functionalized levers, increasing the relative humidity is shown to decrease the Young's modulus values of the different films and promote their adhesion forces with CNCs. In particular, CNCs more strongly interact with glucomannan and lignin than xylan, and in the case of lignin, the oxidation of the film promotes strong variations in the adhesion force. Such results allow to better understand the lignocellulosic film properties at the nanoscale, which should lead to an improvement in the production of new highly added-value composites.


Subject(s)
Cellulose/chemistry , Elastic Modulus , Humidity , Lignin/chemistry , Microscopy, Atomic Force , Polymers/chemistry , Boehmeria/chemistry , Hydrogen-Ion Concentration , Mannans/chemistry , Nanocomposites/chemistry , Nanotechnology/methods , Oxygen/chemistry , Poisson Distribution , Polysaccharides/chemistry , Temperature , Xylans/chemistry , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...