Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Cent Sci ; 9(11): 2084-2095, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38033807

ABSTRACT

Analyzing the chemical composition of seawater to understand its influence on ecosystem functions is a long-lasting challenge due to the inherent complexity and dynamic nature of marine environments. Describing the intricate chemistry of seawater requires optimal in situ sampling. Here is presented a novel underwater hand-held solid-phase extraction device, I-SMEL (In Situ Marine moleculELogger), which aims to concentrate diluted molecules from large volumes of seawater in a delimited zone targeting keystone benthic species. Marine benthic holobionts, such as sponges, can impact the chemical composition of their surroundings possibly through the production and release of their specialized metabolites, hence termed exometabolites (EMs). I-SMEL was deployed in a sponge-dominated Mediterranean ecosystem at a 15 m depth. Untargeted MS-based metabolomics was performed on enriched EM extracts and showed (1) the chemical diversity of enriched seawater metabolites and (2) reproducible recovery and enrichment of specialized sponge EMs such as aerothionin, demethylfurospongin-4, and longamide B methyl ester. These EMs constitute the chemical identity of each targeted species: Aplysina cavernicola, Spongia officinalis, and Agelas oroides, respectively. I-SMEL concentrated sponge EMs from 10 L of water in a 10 min sampling time. The present proof of concept with I-SMEL opens new research perspectives in marine chemical ecology and sets the stage for further sustainable efforts in natural product chemistry.

3.
ACS Omega ; 7(47): 43068-43083, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36467926

ABSTRACT

Sponges are prolific producers of specialized metabolites with unique structural scaffolds. Their chemical diversity has always inspired natural product chemists working in drug discovery. As part of their metabolic filter-feeding activities, sponges are known to release molecules, possibly including their specialized metabolites. These released "Exo-Metabolites" (EMs) may be considered as new chemical reservoirs that could be collected from the water column while preserving marine biodiversity. The present work aims to determine the proportion and diversity of specialized EMs released by the sponge Aplysina cavernicola (Vacelet 1959). This Mediterranean sponge produces bromo-spiroisoxazoline alkaloids that are widely distributed in the Aplysinidae family. Aquarium experiments were designed to facilitate a continuous concentration of dissolved and diluted metabolites from the seawater around the sponges. Mass Spectrometry (MS)-based metabolomics combined with a dereplication pipeline were performed to investigate the proportion and identity of brominated alkaloids released as EMs. Chemometric analysis revealed that brominated features represented 12% of the total sponge's EM features. Consequently, a total of 13 bromotyrosine alkaloids were reproducibly detected as EMs. The most abundant ones were aerothionin, purealidin L, aerophobin 1, and a new structural congener, herein named aplysine 1. Their structural identity was confirmed by NMR analyses following their isolation. MS-based quantification indicated that these major brominated EMs represented up to 1.0 ± 0.3% w/w of the concentrated seawater extract. This analytical workflow and collected results will serve as a stepping stone to characterize the composition of A. cavernicola's EMs and those released by other sponges through in situ experiments, leading to further evaluate the biological properties of such EMs.

4.
Food Funct ; 5(7): 1409-21, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24777447

ABSTRACT

CITREM is an emulsifier used in the food industry and contains citric acid esters of mono- and diglycerides (GCFE). It is generally recognized as safe but no publication on its digestibility under gastrointestinal conditions and impact on fat digestion was available. It was shown here that fatty acids are released from CITREM by gastric lipase, pancreatic lipase, pancreatic-lipase-related protein 2 and carboxyl ester hydrolase. A two-step in vitro digestion model mimicking lipolysis in the stomach and upper small intestine of term and preterm infants was then used to evaluate the digestibility of CITREM alone, CITREM-containing infant formula and fat emulsions, and isolated GCFE fractions. Overall, it was shown that fat digestion is not significantly changed by the presence of CITREM, and fatty acids contained in CITREM compounds are released to a large extent by lipases. Nevertheless, undigestible water-soluble compounds containing glycerol and citric acid units were identified, indicating that the ester bond between citric acid and glycerol is not fully hydrolyzed throughout the proposed digestion.


Subject(s)
Citrates/metabolism , Diglycerides/metabolism , Emulsifying Agents/metabolism , Esters/metabolism , Infant Formula/chemistry , Monoglycerides/metabolism , Carboxylesterase/metabolism , Digestion , Emulsions/chemistry , Fatty Acids/metabolism , Gastrointestinal Tract/enzymology , Humans , Infant , Lipase/metabolism , Lipolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...