Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Comput Biol Med ; 178: 108722, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38889628

ABSTRACT

The timely psychological stress detection can improve the quality of human life by preventing stress-induced behavioral and pathological consequences. This paper presents a novel framework that eliminates the need of Electrocardiography (ECG) signals-based referencing of Phonocardiography (PCG) signals for psychological stress detection. This stand-alone PCG-based methodology uses wavelet scattering approach on the data acquired from twenty-eight healthy adult male and female subjects to detect psychological stress. The acquired PCG signals are asynchronously segmented for the analysis using wavelet scattering transform. After the noise bands removal, the optimized segmentation length (L), scattering network parameters namely-invariance scale (J) and quality factor (Q) are utilized for computation of scattering features. These scattering coefficients generated are fed to K-nearest neighbor (KNN) and Extreme Gradient Boosting (XGBoost) classifier and the ten-fold cross validation-based performance metrics obtained are-accuracy 94.30 %, sensitivity 97.96 %, specificity 88.01 % and area under the curve (AUC) 0.9298 using XGBoost classifier for detecting psychological stress. Most importantly, the framework also identified two frequency bands in PCG signals with high discriminatory power for psychological stress detection as 270-290 Hz and 380-390 Hz. The elimination of multi-modal data acquisition and analysis makes this approach cost-efficient and reduces computational complexity.

3.
Brain Inform ; 11(1): 11, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703311

ABSTRACT

The hand motor activity can be identified and converted into commands for controlling machines through a brain-computer interface (BCI) system. Electroencephalography (EEG) based BCI systems employ electrodes to measure the electrical brain activity projected at the scalp and discern patterns. However, the volume conduction problem attenuates the electric potential from the brain to the scalp and introduces spatial mixing to the signals. EEG source imaging (ESI) techniques can be applied to alleviate these issues and enhance the spatial segregation of information. Despite this potential solution, the use of ESI has not been extensively applied in BCI systems, largely due to accuracy concerns over reconstruction accuracy when using low-density EEG (ldEEG), which is commonly used in BCIs. To overcome these accuracy issues in low channel counts, recent studies have proposed reducing the number of EEG channels based on optimized channel selection. This work presents an evaluation of the spatial and temporal accuracy of ESI when applying optimized channel selection towards ldEEG number of channels. For this, a simulation study of source activity related to hand movement has been performed using as a starting point an EEG system with 339 channels. The results obtained after optimization show that the activity in the concerned areas can be retrieved with a spatial accuracy of 3.99, 10.69, and 14.29 mm (localization error) when using 32, 16, and 8 channel counts respectively. In addition, the use of optimally selected electrodes has been validated in a motor imagery classification task, obtaining a higher classification performance when using 16 optimally selected channels than 32 typical electrode distributions under 10-10 system, and obtaining higher classification performance when combining ESI methods with the optimal selected channels.

4.
Sci Rep ; 14(1): 12483, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816409

ABSTRACT

Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.


Subject(s)
Algorithms , Cognitive Dysfunction , Electroencephalography , Humans , Electroencephalography/methods , Cognitive Dysfunction/diagnosis , Aged , Female , Male , Wavelet Analysis , Machine Learning , Middle Aged , Signal Processing, Computer-Assisted
5.
Article in English | MEDLINE | ID: mdl-38083049

ABSTRACT

The brain's response to visual stimuli of different colors might be used in a brain-computer interface (BCI) paradigm, for letting a user control their surroundings by looking at specific colors. Allowing the user to control certain elements in its environment, such as lighting and doors, by looking at corresponding signs of different colors could serve as an intuitive interface. This paper presents work on the development of an intra-subject classifier for red, green, and blue (RGB) visual evoked potentials (VEPs) in recordings performed with an electroencephalogram (EEG). Three deep neural networks (DNNs), proposed in earlier papers, were employed and tested for data in source- and electrode space. All the tests performed in electrode space yielded better results than those in source space. The best classifier yielded an accuracy of 77% averaged over all subjects, with the best subject having an accuracy of 96%.Clinical relevance- This paper demonstrates that deep learning can be used to classify between red, green and blue visual evoked potentials in EEG recordings with an average accuracy of 77%.


Subject(s)
Brain-Computer Interfaces , Deep Learning , Humans , Evoked Potentials, Visual , Electroencephalography/methods , Neural Networks, Computer
6.
Article in English | MEDLINE | ID: mdl-38083098

ABSTRACT

In recent times, we have seen extensive research in the field of EEG-based emotion identification. The majority of solutions suggested by current literature use sophisticated deep learning techniques for the identification of human emotions. These models are very complex and need huge resources to implement. Hence, in this work, a method for human emotion recognition is proposed which is based on much simpler architecture. For that, two publicly available datasets SEED and DEAP are used to perform experiments. First, the EEG signals of the two datasets are segmented into epochs of 1second duration. The epochs are also decomposed into different brain rhythms. The features computation is performed in two different ways, one is directly from the epochs and the other way is from the brain rhythms obtained after the decomposition of the epochs. Several features and their combination are examined with different classifiers. For the DEAP dataset baseline features are also utilised. It is observed that the support vector machine (SVM) has shown the best performance for the DEAP dataset when baseline feature correction and epoch decomposition are implemented together. The best achieved average accuracy is 96.50% and 96.71% for high versus low valence classes and high versus low arousal classes, respectively. For the SEED dataset, the best average accuracy of 86.89% is achieved using the multilayer perceptron (MLP) with 2 hidden layers.Clinical relevance- This work can be further explored to develop an automated mental health monitor which can assist doctors in their primary screening.


Subject(s)
Electroencephalography , Emotions , Humans , Electroencephalography/methods , Emotions/physiology , Brain , Machine Learning , Neural Networks, Computer
7.
Sci Rep ; 12(1): 22547, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581646

ABSTRACT

Early detection of Parkinson's disease (PD) is very important in clinical diagnosis for preventing disease development. In this study, we present efficient discrete wavelet transform (DWT)-based methods for detecting PD from health control (HC) in two cases, namely, off-and on-medication. First, the EEG signals are preprocessed to remove major artifacts before being decomposed into several EEG sub-bands (approximate and details) using DWT. The features are then extracted from the wavelet packet-derived reconstructed signals using different entropy measures, namely, log energy entropy, Shannon entropy, threshold entropy, sure entropy, and norm entropy. Several machine learning techniques are investigated to classify the resulting PD/HC features. The effects of DWT coefficients and brain regions on classification accuracy are being investigated as well. Two public datasets are used to verify the proposed methods: the SanDiego dataset (31 subjects, 93 min) and the UNM dataset (54 subjects, 54 min). The results are promising and show that four entropy measures: log energy entropy, threshold entropy, sure entropy, and modified-Shannon entropy (TShEn) lead to high classification accuracy, indicating they are good biomarkers for PD detection. With the SanDiego dataset, the classification results of off-medication PD versus HC are 99.89, 99.87, and 99.91 for accuracy, sensitivity, and specificity, respectively, using the combination of DWT + TShEn and KNN classifier. Using the same combination, the results of on-medication PD versus HC are 94.21, 93.33, and 95%. With the UNM dataset, the obtained classification accuracy is around 99.5% in both cases of off-and on-medication PD using DWT + TShEn + SVM and DWT + ThEn + KNN, respectively. The results also demonstrate the importance of all DWT coefficients and that selecting a suitable small number of EEG channels from several brain regions could improve the classification accuracy.


Subject(s)
Parkinson Disease , Wavelet Analysis , Humans , Parkinson Disease/diagnosis , Electroencephalography/methods , Brain , Machine Learning , Algorithms , Signal Processing, Computer-Assisted
8.
Sci Rep ; 12(1): 11221, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35780173

ABSTRACT

High-density Electroencephalography (HD-EEG) has proven to be the EEG montage that estimates the neural activity inside the brain with highest accuracy. Multiple studies have reported the effect of electrode number on source localization for specific sources and specific electrode configurations. The electrodes for these configurations are often manually selected to uniformly cover the entire head, going from 32 to 128 electrodes, but electrode configurations are not often selected according to their contribution to estimation accuracy. In this work, an optimization-based study is proposed to determine the minimum number of electrodes that can be used and to identify the optimal combinations of electrodes that can retain the localization accuracy of HD-EEG reconstructions. This optimization approach incorporates scalp landmark positions of widely used EEG montages. In this way, a systematic search for the minimum electrode subset is performed for single- and multiple-source localization problems. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) combined with source reconstruction methods is used to formulate a multi-objective optimization problem that concurrently minimizes (1) the localization error for each source and (2) the number of required EEG electrodes. The method can be used for evaluating the source localization quality of low-density EEG systems (e.g. consumer-grade wearable EEG). We performed an evaluation over synthetic and real EEG datasets with known ground-truth. The experimental results show that optimal subsets with 6 electrodes can attain an equal or better accuracy than HD-EEG (with more than 200 channels) for a single source case. This happened when reconstructing a particular brain activity in more than 88% of the cases in synthetic signals and 63% in real signals, and in more than 88% and 73% of cases when considering optimal combinations with 8 channels. For a multiple-source case of three sources (only with synthetic signals), it was found that optimized combinations of 8, 12 and 16 electrodes attained an equal or better accuracy than HD-EEG with 231 electrodes in at least 58%, 76%, and 82% of cases respectively. Additionally, for such electrode numbers, lower mean errors and standard deviations than with 231 electrodes were obtained.


Subject(s)
Brain Mapping , Electroencephalography , Algorithms , Brain Mapping/methods , Electrodes , Electroencephalography/methods , Scalp
9.
Sci Rep ; 12(1): 3523, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241745

ABSTRACT

In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8-10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.


Subject(s)
Electroencephalography , Neural Networks, Computer , Algorithms , Arousal , Electroencephalography/methods , Emotions , Humans
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3998-4001, 2020 07.
Article in English | MEDLINE | ID: mdl-33018876

ABSTRACT

In this article, by choosing and optimizing suitable structure in each stage, we have designed a multi-purpose low noise chopper amplifier. The proposed neural chopper amplifier with high CMRR and PSRR is suitable for EEG, LFP and AP signals while it has a low NEF. In order to minimize the noise and increase the bandwidth, a single stage current reuse amplifier with pseudo-resistor common-mode feedback is chosen, while a simple fully differential amplifier is implemented at the second stage to provide high swing. A DC servo loop with an active RC integrator is designed to block the DC offset of electrodes and a positive feedback loop is used to increase the input impedance. Finally, an area and power-efficient ripple reduction technique and chopping spike filter are used in order to have a clear signal. The designed circuit is simulated in a commercially available 0.18 µm CMOS technology. 3.7 µA current is drawn from a ±0.6V supply. The total bandwidth is from 50 mHz to 10 kHz while the total inputreferred noise in this bandwidth is 2.9 µVrms and the mid-band gain is about 40 dB. The designed amplifier can tolerate up to 60 mV DC electrode offset and the amplifier's input impedance with positive feedback loop is 17 MΩ while the chopping frequency is 20 kHz. With the designed ripple reduction, there is just a negligible peak in the input-referred noise due to upmodulated noise at chopping frequency. In order to prove the performance of the designed circuit, 500 Monte Carlo analysis is done for process and mismatch. The mean value for CMRR and PSRR are 94 and 80 dB, respectively.


Subject(s)
Amplifiers, Electronic , Signal Processing, Computer-Assisted , Electric Impedance , Electrodes , Equipment Design
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4298-4301, 2020 07.
Article in English | MEDLINE | ID: mdl-33018946

ABSTRACT

In this paper, a power efficient, low-noise and high swing capacitively-coupled amplifier (CCA) for neural recording applications is proposed. The use of current splitting technique and current scaling technique in a current mirror operational transconductance amplifier (CM-OTA) has lead to a very good trade-off between power and noise. The presented architecture is simple, without cascode transistor while it has more than 80 dB open-loop gain without extra power consumption. As a result, the proposed structure has a better power efficiency factor (PEF) and output swing in comparison with previous reported architectures is increased to the 2Vov below the maximum supply voltage. In order to reduce flicker noise and achieve better trade-off between the power and noise, PMOS transistors with an optimum size have been utilized which operate in sub-threshold region. The amplifier is designed and simulated in a commercially available 0.18 µm CMOS technology. Monte Carlo simulations for process and mismatch have been carried out. The gain of the proposed amplifier is 39.22 dB in its bandwidth (3 Hz - 5 kHz). Total input-referred noise is 3.03 µVrms over 1 Hz - 10 kHz. The power consumption of the amplifier is 2.98 µW at supply voltage of 1.4 V. The noise efficiency factor (NEF) and PEF are 2.4 and 8.06, respectively. The output swing is about 1.16 V. It means the proposed amplifier can tolerate up to 13.2 mV peak-to-peak input signal while its total harmonic distortion (THD) is less than 1%.


Subject(s)
Amplifiers, Electronic , Neurons/physiology
12.
Sci Rep ; 10(1): 14917, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913275

ABSTRACT

We present a new approach for a biometric system based on electroencephalographic (EEG) signals of resting-state, that can identify a subject and reject intruders with a minimal subset of EEG channels. To select features, we first use the discrete wavelet transform (DWT) or empirical mode decomposition (EMD) to decompose the EEG signals into a set of sub-bands, for which we compute the instantaneous and Teager energy and the Higuchi and Petrosian fractal dimensions for each sub-band. The obtained features are used as input for the local outlier factor (LOF) algorithm to create a model for each subject, with the aim of learning from it and rejecting instances not related to the subject in the model. In search of a minimal subset of EEG channels, we used a channel-selection method based on the non-dominated sorting genetic algorithm (NSGA)-III, designed with the objectives of minimizing the required number EEG channels and increasing the true acceptance rate (TAR) and true rejection rate (TRR). This method was tested on EEG signals from 109 subjects of the public motor movement/imagery dataset (EEGMMIDB) using the resting-state with the eyes-open and the resting-state with the eyes-closed. We were able to obtain a TAR of [Formula: see text] and TRR of [Formula: see text] using 64 EEG channels. More importantly, with only three channels, we were able to obtain a TAR of up to [Formula: see text] and a TRR of up to [Formula: see text] for the Pareto-front, using NSGA-III and DWT-based features in the resting-state with the eyes-open. In the resting-state with the eyes-closed, the TAR was [Formula: see text] and the TRR [Formula: see text] also using DWT-based features from three channels. These results show that our approach makes it possible to create a model for each subject using EEG signals from a reduced number of channels and reject most instances of the other 108 subjects, who are intruders in the model of the subject under evaluation. Furthermore, the candidates obtained throughout the optimization process of NSGA-III showed that it is possible to obtain TARs and TRRs above 0.900 using LOF and DWT- or EMD-based features with only one to three EEG channels, opening the way to testing this approach on bigger datasets to develop a more realistic and usable EEG-based biometric system.


Subject(s)
Algorithms , Biometry/methods , Brain/physiology , Data Interpretation, Statistical , Electroencephalography/instrumentation , Electroencephalography/methods , Humans , Signal Processing, Computer-Assisted , Wavelet Analysis
13.
Front Neurosci ; 14: 593, 2020.
Article in English | MEDLINE | ID: mdl-32625054

ABSTRACT

We present a multi-objective optimization method for electroencephalographic (EEG) channel selection based on the non-dominated sorting genetic algorithm (NSGA) for epileptic-seizure classification. We tested the method on EEG data of 24 patients from the CHB-MIT public dataset. The procedure starts by decomposing the EEG data from each channel into different frequency bands using the empirical mode decomposition (EMD) or the discrete wavelet transform (DWT), and then for each sub-band four features are extracted; two energy values and two fractal dimension values. The obtained feature vectors are then iteratively tested for solving two unconstrained objectives by NSGA-II or NSGA-III; to maximize classification accuracy and to reduce the number of EEG channels required for epileptic seizure classification. Our results have shown accuracies of up to 1.00 with only one EEG channel. Interestingly, when using all the EEG channels available, lower accuracies were achieved compared to the case when EEG channels were selected by NSGA-II or NSGA-III; i.e., in patient 19 we obtained an accuracy of 0.95 using all the channels and 0.975 using only two channels selected by NSGA-III. The results obtained are encouraging and it has been shown that it is possible to classify epileptic seizures using a few electrodes, which provide evidence for the future development of portable EEG seizure detection devices.

14.
Sci Rep ; 10(1): 5850, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246122

ABSTRACT

We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels. The optimization process was performed by the non-dominated sorting genetic algorithm (NSGA), which found a three-channel combination that achieved an accuracy of 0.83, with both a true acceptance rate (TAR) and a true rejection rate (TRR) of 1.00. In the best case, we obtained an accuracy of up to 0.98 for subject identification with a TAR of 0.95 and a TRR 0.93, all using seven EEG channels found by NSGA-III in a subset of subjects manually created. The findings were also validated using 10 different subdivisions of subjects randomly created, obtaining up to 0.97 ± 0.02 of accuracy, a TAR of 0.81 ± 0.12 and TRR of 0.85 ± 0.10 using eight channels found by NSGA-III. These results support further studies on larger datasets for potential applications of EEG in identification and authentication systems.


Subject(s)
Electroencephalography/methods , Patient Identification Systems/methods , Adult , Algorithms , Brain/physiology , Evoked Potentials/physiology , Humans , Reproducibility of Results , Support Vector Machine
15.
Front Neurosci ; 14: 175, 2020.
Article in English | MEDLINE | ID: mdl-32180702

ABSTRACT

Several approaches can be used to estimate neural activity. The main differences between them concern the a priori information used and its sensitivity to high noise levels. Empirical mode decomposition (EMD) has been recently applied to electroencephalography EEG-based neural activity reconstruction to provide a priori time-frequency information to improve the estimation of neural activity. EMD has the specific ability to identify independent oscillatory modes in non-stationary signals with multiple oscillatory components. However, attempts to use EMD in EEG analysis have not yet provided optimal reconstructions, due to the intrinsic mode-mixing problem of EMD. Several studies have used single-channel analysis, whereas others have used multiple-channel analysis for other applications. Here, we present the results of multiple-channel analysis using multivariate empirical mode decomposition (MEMD) to reduce the mode-mixing problem and provide useful a priori time-frequency information for the reconstruction of neuronal activity using several low-density EEG electrode montages. The methods were evaluated using real and synthetic EEG data, in which the reconstructions were performed using the multiple sparse priors (MSP) algorithm with EEG electrode montages of 32, 16, and 8 electrodes. The quality of the source reconstruction was assessed using the Wasserstein metric. A comparison of the solutions without pre-processing and those after applying MEMD showed the source reconstructions to be improved using MEMD as a priori information for the low-density montages of 8 and 16 electrodes. The mean source reconstruction error on a real EEG dataset was reduced by 59.42 and 66.04% for the 8 and 16 electrode montages, respectively, and that on a simulated EEG with three active sources, by 87.31 and 31.45% for the same electrode montages.

16.
ISA Trans ; 93: 231-243, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30782430

ABSTRACT

It can be challenging to design and implement Model Predictive Control (MPC) schemes in systems with fast dynamics. As MPCs often introduce high computational loads, it can be hard to assure real-time properties required by the dynamic system. An understanding of the system's behavior, to exploit system properties that can benefit real-time implementation is imperative. Moreover, MPC implementations on embedded local devices rarely allows flexibility to changes in model and control philosophy, due to increased complexity and computational loads. A change in control philosophy (run-time) can be quite relevant in power systems that can change from an integrated to a segregated state. This paper proposes a distributed control hierarchy with a real-time MPC implementation, designed as a higher-level control unit, to feed a lower-level control device with references. The higher-level control unit's objective in this paper is to generate the control reference of an Active Power Filter for system-level harmonic mitigation. In particular, a novel system architecture, which incorporates the higher-level MPC control and handles distribution of control action to low-level controllers, as well as receiving measurements used by the MPC, is proposed to obtain the application's real-time properties and control flexibility. The higher-level MPC control, which is designed as a distributed control node, can be swapped with another controller (or control philosophy) if the control objective or the dynamic system changes. A standard optimization framework and standard software and hardware technology is used, and the MPC is designed on the basis of repetitive and distributed control, which allows the use of relatively low control update rate. A simulator architecture is implemented with the aim of mimicking a Hardware-In-Loop (HIL) simulator test to evaluate the application's real-time properties, as well as the application's resource usage. The results demonstrates that the implementation of the harmonic mitigation application exhibits the real-time requirements of the application with acceptable resource usage.

17.
J Biomed Res ; 34(3): 180-190, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-32561698

ABSTRACT

We are here to present a new method for the classification of epileptic seizures from electroencephalogram (EEG) signals. It consists of applying empirical mode decomposition (EMD) to extract the most relevant intrinsic mode functions (IMFs) and subsequent computation of the Teager and instantaneous energy, Higuchi and Petrosian fractal dimension, and detrended fluctuation analysis (DFA) for each IMF. We validated the method using a public dataset of 24 subjects with EEG signals from 22 channels and showed that it is possible to classify the epileptic seizures, even with segments of six seconds and a smaller number of channels ( e.g., an accuracy of 0.93 using five channels). We were able to create a general machine-learning-based model to detect epileptic seizures of new subjects using epileptic-seizure data from various subjects, after reducing the number of instances, based on the k-means algorithm.

18.
Front Integr Neurosci ; 12: 55, 2018.
Article in English | MEDLINE | ID: mdl-30450041

ABSTRACT

The localization of active brain sources from Electroencephalogram (EEG) is a useful method in clinical applications, such as the study of localized epilepsy, evoked-related-potentials, and attention deficit/hyperactivity disorder. The distributed-source model is a common method to estimate neural activity in the brain. The location and amplitude of each active source are estimated by solving the inverse problem by regularization or using Bayesian methods with spatio-temporal constraints. Frequency and spatio-temporal constraints improve the quality of the reconstructed neural activity. However, separation into frequency bands is beneficial when the relevant information is in specific sub-bands. We improved frequency-band identification and preserved good temporal resolution using EEG pre-processing techniques with good frequency band separation and temporal resolution properties. The identified frequency bands were included as constraints in the solution of the inverse problem by decomposing the EEG signals into frequency bands through various methods that offer good frequency and temporal resolution, such as empirical mode decomposition (EMD) and wavelet transform (WT). We present a comparative analysis of the accuracy of brain-source reconstruction using these techniques. The accuracy of the spatial reconstruction was assessed using the Wasserstein metric for real and simulated signals. We approached the mode-mixing problem, inherent to EMD, by exploring three variants of EMD: masking EMD, Ensemble-EMD (EEMD), and multivariate EMD (MEMD). The results of the spatio-temporal brain source reconstruction using these techniques show that masking EMD and MEMD can largely mitigate the mode-mixing problem and achieve a good spatio-temporal reconstruction of the active sources. Masking EMD and EEMD achieved better reconstruction than standard EMD, Multiple Sparse Priors, or wavelet packet decomposition when EMD was used as a pre-processing tool for the spatial reconstruction (averaged over time) of the brain sources. The spatial resolution obtained using all three EMD variants was substantially better than the use of EMD alone, as the mode-mixing problem was mitigated, particularly with masking EMD and EEMD. These findings encourage further exploration into the use of EMD-based pre-processing, the mode-mixing problem, and its impact on the accuracy of brain source activity reconstruction.

SELECTION OF CITATIONS
SEARCH DETAIL
...