Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(2): 105940, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36718363

ABSTRACT

Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.

2.
Bioorg Med Chem ; 23(17): 5946-53, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26220519

ABSTRACT

DNA methylation, an epigenetic modification regulating gene expression, is a promising target in cancer. In an effort to identify new non nucleosidic inhibitors of DNA methyltransferases, the enzymes responsible for DNA methylation, we carried out a high-throughput screening of 66,000 chemical compounds based on an enzymatic assay against catalytic DNMT3A. A family of propiophenone derivatives was identified. After chemical optimization and structure activity relationship studies, a new inhibitor (33) was obtained with an EC50 of 2.1 µM against DNMT3A. The mechanism of inhibition of the compound was investigated as it forms a reactive Michael acceptor group in situ. Thereby, the Michael acceptor 20 was identified. This compound was further characterized for its biological activity in cancer cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/chemical synthesis , DNA Methyltransferase 3A , Epigenomics , Humans , Molecular Structure , Structure-Activity Relationship
3.
Bioorg Med Chem ; 23(13): 3712-21, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25937235

ABSTRACT

A screening program aimed at discovering novel anticancer agents based on natural products led to the selection of koningic acid (KA), known as a potent inhibitor of glycolysis. A method was set up to produce this fungal sesquiterpene lactone in large quantities by fermentation, thus allowing (i) an extensive analysis of its anticancer potential in vitro and in vivo and (ii) the semi-synthesis of analogues to delineate structure-activity relationships. KA was characterized as a potent, but non-selective cytotoxic agent, active under both normoxic and hypoxic conditions and inactive in the A549 lung cancer xenograft model. According to our SAR, the acidic group could be replaced to keep bioactivity but an intact epoxide is essential.


Subject(s)
Antineoplastic Agents/chemical synthesis , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Hypoxia , Cell Line, Tumor , Fermentation , Glycolysis/drug effects , Humans , Inhibitory Concentration 50 , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Sesquiterpenes/chemical synthesis , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacokinetics , Sesquiterpenes/pharmacology , Structure-Activity Relationship , Trichoderma/chemistry , Trichoderma/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
Nat Prod Commun ; 9(8): 1159-62, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25233597

ABSTRACT

Three new anthranilic acid derivatives: N-(R)-3'-hydroxydocosanoylanthranilic acid (1), N-(R)-3'-hydroxytricosanoylanthranilic acid (2) and N-(R)-3'-hydroxytetracosanoylanthranilic acid (3), in addition to one knownanthranilic acid and six known flavonoids, were isolated from the ethyl acetate extract of Ononis pusilla L. The structures of the isolated compounds were assigned by spectroscopic methods, including 1D and 2D homo and heteronuclear NMR experiments, ESI-MS, chemical transformation and comparison with literature data.


Subject(s)
Fabaceae/chemistry , Plant Extracts/chemistry , ortho-Aminobenzoates/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
5.
Org Lett ; 15(18): 4734-7, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24001374

ABSTRACT

Synthetic studies on hemicalide, a recently isolated marine natural product displaying highly potent antiproliferative activity and a unique mode of action, have highlighted a reliable Horner-Wadsworth-Emmons olefination to create the C6-C7 alkene and a remarkable efficient Suzuki-Miyaura coupling to form the C15-C16 bond, resulting in the development of a convergent approach toward the C1-C25 fragment.


Subject(s)
Alkenes/chemistry , Antineoplastic Agents/chemical synthesis , Biological Products/chemical synthesis , Polyketides/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Marine Biology , Molecular Structure , Polyketides/chemistry , Polyketides/pharmacology , Porifera/chemistry , Stereoisomerism
6.
Phytochemistry ; 94: 184-91, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23618620

ABSTRACT

Six dichapetalins named dichapetalins N-S were isolated from Dichapetalum mombuttense, Dichapetalum zenkeri and Dichapetalum leucosia. They were accompanied in the same plants by the known dichapetalins A, B, C, I, L and M. The structures of the compounds were elucidated by 1D and 2D NMR experiments and mass spectrometry. They all possessed the dammarane skeleton substituted at position C-3 by a C6-C2 unit forming a 2-phenylpyran moiety. All contained a lactone ring in the side chain except dichapetalins O, Q and R, in which this ring was replaced by a lactol. Dichapetalin Q and R were also the first dichapetalins bearing a tertiary methyl and a double bond instead of the cyclopropane of the dammaranes. All these compounds were assayed against cancer cell lines HCT116 and WM 266-4 and displayed cytotoxic and anti-proliferative activities in the 10(-6) to 10(-8)M range.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Magnoliopsida/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , HCT116 Cells , HL-60 Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Magnetic Resonance Spectroscopy/methods , Magnoliopsida/classification , Molecular Structure , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Species Specificity , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...