Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(25): 11604-11615, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38864676

ABSTRACT

We report the synthesis and characterization of a series of BNP-incorporated borafluorenate heterocycles formed via thermolysis reactions of pyridylphosphine and bis(phosphine)-coordinated borafluorene azides. The use of diphenyl-2-pyridylphosphine (PyPh2P), trans-1,2-bis(diphenylphosphino)ethylene (Ph2P(H)C═C(H)PPh2), and bis(diphenylphosphino)methane (Ph2PC(H2)PPh2) as stabilizing ligands resulted in Staudinger reactions to form complex heterocycles with four- (BN2P, BNPC, P2N2) and five-membered (BNP2C and BN2PC) rings, which were successfully isolated and fully characterized by multinuclear NMR and X-ray crystallography. However, when bis(diphenylphosphino)benzene (Ph2P-Ph-PPh2) was used as the ligand in a reaction with 9-bromo-9-borafluorene (BF-Br), due to the close proximity of the donor P atoms, the diphosphine-stabilized borafluoronium ion with an unusual borafluorene dibromide anion was formed. Reaction of the borafluoronium ion with trimethylsilyl azide left the cation intact, and the dibromide anion was substituted by a diazide. Density functional theory calculations were used to provide mechanistic insight into the formation of these new boracyclic compounds. This work highlights a new method in which donor phosphine ligands may be used to promote dimerization, cyclization, and ring contraction reactions to produce boracycles via Staudinger reactions.

2.
J Am Chem Soc ; 146(10): 6506-6515, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38420913

ABSTRACT

Systems that possess open- and closed-shell behavior attract significant attention from researchers due to their inherent redox and charge transport properties. Herein, we report the synthesis of the first diborepin biradicals. They display tunable biradical character based on the steric and electronic profile of the stabilizing ligand and the resulting geometric deviation of the diborepin core from planarity. While there are numerous all-carbon-based biradical systems, boron-based biradical compounds are comparatively rare, particularly ones in which the radical sites are disjointed. Calculations using density functional theory (DFT) and multireference methods demonstrate that the fused diborepin scaffold exhibits high biradical character, up to 95%. Use of a nonsterically demanding diaminocarbene promotes the planarization of the pentacyclic framework, resulting in the synthetic realization of a diborepin containing a dibora-quinoidal core, which possesses a closed-shell ground state and thermally accessible triplet state. The biradicals were structurally authenticated and characterized by both solution and solid-state electron paramagnetic resonance (EPR) spectroscopy. Half-field transitions were observed at low temperatures (about 170 K), confirming the presence of the triplet state. Initial reactivity studies of the biradicals led to the isolation and structural characterization of bis(borepin hydride) and bis(borepin dianion).

3.
J Am Chem Soc ; 146(9): 6145-6156, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38380615

ABSTRACT

Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.

4.
J Am Chem Soc ; 146(9): 6025-6036, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408197

ABSTRACT

The formation of isolable monatomic BiI complexes and BiII radical species is challenging due to the pronounced reducing nature of metallic bismuth. Here, we report a convenient strategy to tame BiI and BiII atoms by taking advantage of the redox noninnocent character of a new chelating bis(germylene) ligand. The remarkably stable novel BiI cation complex 4, supported by the new bis(iminophosphonamido-germylene)xanthene ligand [(P)GeII(Xant)GeII(P)] 1, [(P)GeII(Xant)GeII(P) = Ph2P(NtBu)2GeII(Xant)GeII(NtBu)2PPh2, Xant = 9,9-dimethyl-xanthene-4,5-diyl], was synthesized by a two-electron reduction of the cationic BiIIII2 precursor complex 3 with cobaltocene (Cp2Co) in a molar ratio of 1:2. Notably, owing to the redox noninnocent character of the germylene moieties, the positive charge of BiI cation 4 migrates to one of the Ge atoms in the bis(germylene) ligand, giving rise to a germylium(germylene) BiI complex as suggested by DFT calculations and X-ray photoelectron spectroscopy (XPS). Likewise, migration of the positive charge of the BiIIII2 cation of 3 results in a bis(germylium)BiIIII2 complex. The delocalization of the positive charge in the ligand engenders a much higher stability of the BiI cation 4 in comparison to an isoelectronic two-coordinate Pb0 analogue (plumbylone; decomposition below -30 °C). Interestingly, 4[BArF] undergoes a reversible single-electron transfer (SET) reaction (oxidation) to afford the isolable BiII radical complex 5 in 5[BArF]2. According to electron paramagnetic resonance (EPR) spectroscopy, the unpaired electron predominantly resides at the BiII atom. Extending the redox reactivity of 4[OTf] employing AgOTf and MeOTf affords BiIII(OTf)2 complex 7 and BiIIIMe complex 8, respectively, demonstrating the high nucleophilic character of BiI cation 4.

5.
Inorg Chem ; 62(39): 15809-15818, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37715684

ABSTRACT

A series of BN-incorporated borafluorenate heterocycles, bis(borafluorene-phosphinimine)s (11-15), have been formed via intramolecular Staudinger-type reactions. The reactions were promoted by light or heat using monodentate phosphine-stabilized 9-azido-9-borafluorenes (R3P-BF-N3; 6-10) and involve the release of dinitrogen (N2), migration of phosphine from boron to nitrogen, and oxidation of the phosphorus center (PIII to PV). Density functional theory (DFT) calculations provide mechanistic insight into the formation of these compounds. Compounds 11-15 are blue emissive in the solution and solid states with absolute quantum yields (ΦF) ranging from 12 to 68%.

6.
J Am Chem Soc ; 145(39): 21475-21482, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738168

ABSTRACT

Selective and site-specific boron-doping of polycyclic aromatic hydrocarbon frameworks often give rise to redox and/or photophysical properties that are not easily accessible with the analogous all-carbon systems. Herein, we report ligand-mediated control of boraphenanthrene closed- and open-shell electronic states, which has led to the first structurally characterized examples of neutral bis(9-boraphenanthrene) (2-3) and its corresponding biradical (4). Notably, compounds 2 and 3 show intramolecular charge transfer absorption from the 9-boraphenanthrene units to p-quinodimethane, exhibiting dual (red-shifted) emission in solution due to excited state conjugation enhancement (ESCE). Moreover, while boron-centered monoradicals are ubiquitous, biradical 4 represents a rare type of open-shell singlet compound with 95% biradical character, among the highest of any reported boron-based polycyclic species with two radical sites.

7.
Angew Chem Int Ed Engl ; 62(5): e202215772, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36437238

ABSTRACT

The addition of non-benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9-carbene-9-borafluorene monoanion (1) affords the first examples of dianionic 10-membered bora-crown ethers (2-5), which are characterized by multi-nuclear NMR spectroscopy (1 H, 13 C, 11 B), X-ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound 4, which has a vacant C4 B2 O4 cavity, is reacted with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of 2-5. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.

8.
Inorg Chem ; 61(43): 17049-17058, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36259945

ABSTRACT

The impact of the exact spatial arrangement of the alkali metal on the electronic properties of 9-carbene-9-borafluorene monoanions is assessed, and a series of [K][9-CAAC-9-borafluorene] complexes (1-4) have been isolated (CAAC = cyclic(alkyl)(amino) carbene, (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene). Compound 1, which contains [B]-K(THF)3 interactions, is compared to charge-separated 2-4, which were prepared by capturing the potassium cations with 18-crown-6, 2.2.2-cryptand, or 1,10-phenanthroline. Notably, the 11B NMR spectra of charge-separated borafluorene monoanions 2-4 show distinct low-field signatures compared to 1. Theoretical calculations indicate that charge separation may be exploited to influence the nucleophilic and electron transfer properties of 9-carbene-9-borafluorene monoanions. When [K(2.2.2-cryptand)][9-CAAC-9-borafluorene] (3) is reacted with 9,10-phenanthrenequinone and 1,10-phenanthroline-5,6-dione, the carbene ligand is displaced, and new air-stable R2BO2 spirocycles are formed (5 and 6, respectively). Remarkably, compounds 5 and 6 display fluorescence under UV light in both the solid and solution phases with quantum yields of up to 20%. In addition, a drastic red-shift in the emission color is observed in 6 because of the presence of the nitrogen atoms on the phenanthroline moiety. Mechanistic insights into the formation of these spirocycles are also described based on density functional theory calculations.

9.
Org Biomol Chem ; 20(43): 8454-8460, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36254792

ABSTRACT

PhIBr2, first purported to exist over 100 years ago, has been subject of few reports due to its low stability. However, a recent publication proposes a reaction of PIFA (PhI(OC(O)-CF3)2) with TMSBr to form PhIBr2in situ and demonstrated its efficacy in aryl brominations. This report investigates this synthesis by replicating bromination reactions claiming to use in situ PhIBr2 as described. The spectroscopical and computational results indicate formation of PhI and Br2 where Br2 is responsible for bromination and no supporting evidence for invoking PhIBr2 as an intermediate is found.


Subject(s)
Halogenation
10.
J Am Chem Soc ; 144(36): 16276-16281, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36037435

ABSTRACT

The first structurally characterized example of a trioxaborinanone (2) is produced by the reaction of a 9-carbene-9-borafluorene monoanion and carbon dioxide. When compound 2 is heated or irradiated with UV light, carbon monoxide (CO) is released, and a luminescent dioxaborinanone (3) is formed. Notably, carbon monoxide releasing molecules (CORMs) are of interest for their ability to deliver a specific amount of CO. Due to the turn-on fluorescence observed as a result of the conversion to 3, CORM 2 serves as a means to optically observe CO loss "by eye" under thermal or photochemical conditions.


Subject(s)
Carbon Monoxide , Organometallic Compounds , Carbon Dioxide , Carbon Monoxide/chemistry , Methane/analogs & derivatives , Organometallic Compounds/chemistry
11.
Inorg Chem ; 61(25): 9595-9604, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35696381

ABSTRACT

Borole-doped polycyclic aromatic hydrocarbons (PAHs) have garnered attention in recent years due to their attractive photophysical properties and potential utility in electronic devices. In this work, a borole-doped PAH, 12-boradibenzofluorene, is synthesized and formal intermolecular nitrene and oxygen atom insertion reactions were employed to access 1,2-azaborine- and 1,2-oxaborine-containing analogues of the carbonaceous PAH pentaphene. Iodosobenzene is established as a versatile reagent for oxygen atom insertion reactions into a variety of borole species to access 1,2-oxaborine systems.


Subject(s)
Boron , Polycyclic Aromatic Hydrocarbons , Oxygen
12.
Angew Chem Int Ed Engl ; 61(23): e202202516, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35289046

ABSTRACT

Borepin, a 7-membered boron-containing heterocycle, has become an emerging molecular platform for the development of new materials and optoelectronics. While electron-deficient borepins are well-established, reduced electron-rich species have remained elusive. Herein we report the first isolable, crystalline borepin radical (2 a, 2 b) and anion (3 a, 3 b) complexes, which have been synthesized by potassium graphite (KC8 ) reduction of cyclic(alkyl)(amino) carbene-dibenzo[b,d]borepin precursors. Borepin radicals and anions have been characterized by EPR or NMR, elemental analysis, X-ray crystallography, and cyclic voltammetry. In addition, the bonding features have been investigated computationally using density functional theory.

13.
J Am Chem Soc ; 144(1): 590-598, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35016509

ABSTRACT

Borenium ions, originally synthesized as fundamentally important laboratory curiosities, have attracted significant attention due to their applications in catalysis and frustrated Lewis pair chemistry. However, investigations of the materials properties of these types of compounds are exceptionally rare. Herein, we report the synthesis, molecular structures, and optical properties of a new class of air-stable borenium ions, stabilized by the strongly donating carbodicarbene (CDC) ligand (2, 3, 6). Notably, CDC-borafluorenium ions exhibit thermoluminescence in solution, a result of a twisted intramolecular charge transfer process. The temperature responsiveness, which is observable by the naked eye, is assessed over a 20 to -60 °C range. Significantly, compound 2 emits white light at lower temperatures. In the solid state, these borocations exhibit increased quantum yields due to aggregation-induced emission. CDC-borafluorenium ions with two different counteranions (Br-, BPh4-) were investigated to evaluate the effect of anion size on the solution and solid-state optical properties. In addition, CDCs containing both symmetrical and unsymmetrical N-heterocycles (bis(1-isopropyl-3-methylbenzimidazol-2-ylidene)methane and bis(1,3-dimethyl-1,3-dihydro-2H-benzo[d]imidazol-2-ylidene)methane) were tested to understand the implications of free rotation about the CDC ligand carbon-carbon bonds. The experimental work is complemented by a comprehensive theoretical analysis of the excited-state dynamics.

14.
Inorg Chem ; 60(24): 18981-18989, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34879201

ABSTRACT

The reactions of boratabenzene and borataphenanthrene anions with group 11 Ph3PMCl reagents furnished η2 coordination complexes, with the exception of the copper boratabenzene species that adopted an η6 mode. The binding of arene ligands to copper in an η6 manner is rare, and altering the ancillary ligand on copper to an N-heterocyclic carbene switched the binding of the boratabenzene to η2, indicating that such ligands are capable of vacating coordination sites. The η2 coordination complexes bind side-on, akin to olefins, via a borataalkene unit, although with the carbon atom much more proximal to the metal center than boron.

15.
Inorg Chem ; 60(18): 13941-13949, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34472333

ABSTRACT

Reactions of 9-carbene-9-borafluorene monoanion (1) with elemental selenium and selenium-containing reagents are reported. When compound 1 is reacted with grey selenium in THF, various boryl-substituted selenides and diselenides are produced (2-6), including molecules resulting from migration of the carbene ligand Dipp group (Dipp = 2,6-diisopropylphenyl). However, when a similar reaction between 1 and grey selenium is performed in toluene in the presence of 18-crown-6, boryl-substituted selenide 7 is obtained as the sole boron-containing product. As compound 7 is the monomeric variant of organoselenide 3, 18-crown-6 promotes both product selectivity and solubility in a nonpolar solvent. Diselenide 5, which features a trans-bent B-Se-Se-B core, was directly isolated via reaction of 1 with Se2Cl2 in THF. Computational modeling suggests that the formation of 5 proceeds via a radical mechanism. This was supported by an experiment demonstrating that the CAAC-borafluorene radical also reacts with SeCl2 to yield 5 [CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene]. Energy decomposition analysis of 5 indicates a covalent borafluorene-diselenide bond (ΔEint, -168.9 kcal mol-1). All of the new compounds were fully characterized via single-crystal X-ray diffraction and multinuclear nuclear magnetic resonance (1H, 13C, 11B, and 77Se).

16.
Chem Sci ; 12(10): 3544-3550, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-34163627

ABSTRACT

The mono- and dianions of CO2 (i.e., CO2 - and CO2 2-) have been studied for decades as both fundamentally important oxycarbanions (anions containing only C and O atoms) and as critical species in CO2 reduction and fixation chemistry. However, CO2 anions are highly unstable and difficult to study. As such, examples of stable compounds containing these ions are extremely limited; the unadulterated alkali salts of CO2 (i.e., MCO2, M2CO2, M = alkali metal) decompose rapidly above 15 K, for example. Herein we report the chemical reduction of a cyclic (alkyl)(amino) carbene (CAAC) adduct of CO2 at room temperature by alkali metals, which results in the formation of CAAC-stabilized alkali CO2 - and CO2 2- clusters. One-electron reduction of CAAC-CO2 adduct (1) with lithium, sodium or potassium metal yields stable monoanionic radicals [M(CAAC-CO2)] n (M = Li, Na, K, 2-4) analogous to the alkali CO2 - radical, and two-electron alkali metal reduction affords dianionic clusters of the general formula [M2(CAAC-CO2)] n (5-8) with reduced CO2 units which are structurally analogous to the carbonite anion CO2 2-. It is notable that crystalline clusters of these alkali-CO2 salts may also be isolated via the "one-pot" reaction of free CO2 with free CAAC followed by the addition of alkali metals - a process which does not occur in the absence of carbene. Each of the products 2-8 was investigated using a combination of experimental and theoretical methods.

17.
Angew Chem Int Ed Engl ; 60(23): 13065-13072, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33780572

ABSTRACT

Two-electron reduction of carbene-supported 9-bromo-9-borafluorenes with excess KC8 , Na, or Li-naphthalenide affords six N-heterocyclic carbene (NHC)- or cyclic(alkyl)(amino) carbene (CAAC)-stabilized borafluorene anions (3-8)-the first isolated and structurally authenticated examples of the elusive 9-carbene-9-borafluorene monoanion. The electronic structure, bonding, and aromaticity of the boracyclic anions were comprehensively investigated via computational studies. Compounds 5 and 8 react with metal halides via salt elimination to give new B-E (E=Au, Se, Ge)-containing materials (9-12). Upon reaction with diketones, the carbene ligand cleanly dissociates from 5 or 8 to yield new B-O containing spirocycles (13-14) that cannot be easily obtained using "normal" valent borafluorene compounds. Collectively, these results support the notion that carbene-stabilized monoanionic borafluorenes may serve as a new platform for the one-step construction of higher-value boracyclic materials.

18.
Angew Chem Int Ed Engl ; 60(17): 9407-9411, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33411396

ABSTRACT

A common feature of d- and p-block elements is that they participate in multiple bonding. In contrast, the synthesis of compounds containing homo- or hetero-nuclear multiple bonds involving s-block elements is extremely rare. Herein, we report the synthesis, molecular structure, and computational analysis of a beryllium imido (Be=N) complex (2), which was prepared via oxidation of a molecular Be0 precursor (1) with trimethylsilyl azide Me3 SiN3 (TMS-N3 ). Notably, compound 2 features the shortest known Be=N bond (1.464 Å) to date. This represents the first compound with an s-block metal-nitrogen multiple bond. All compounds were characterized experimentally with multi-nuclear NMR spectroscopy (1 H, 13 C, 9 Be) and single-crystal X-ray diffraction studies. The bonding situation was analyzed with density functional theory (DFT) calculations, which supports the existence of π-bonding between beryllium and nitrogen.

19.
Angew Chem Int Ed Engl ; 59(10): 3971-3975, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31912624

ABSTRACT

The synthesis and reactivity study of the first isolable boraphosphaketene, cyclic(alkyl)(amino) carbene (CAAC)-borafluorene-P=C=O (2), is described. Photolysis of compound 2 results in the formation of CAAC-stabilized BP-doped phenanthryne (3) through tandem decarbonylation, monoatomic phosphide insertion, and ring-expansion. Notably, while BN-doped phenanthryne was previously discussed as a reactive intermediate which could not be isolated, the heavier BP-doped analogue exhibits remarkable solution and solid-state stability. The reactivity of 2 with stable carbenes was also explored. Addition of CAAC to 2 led to migration of the original CAAC ligand from boron to phosphorus and coordination of the added CAAC to carbon, affording compound 4. Reaction of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (NHC) with 2 resulted in N-C bond activation to give the unusual spiro-heterocyclic compound (5).

20.
Angew Chem Int Ed Engl ; 59(10): 3850-3854, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31816143

ABSTRACT

N-Heterocyclic carbene (NHC)- and cyclic (alkyl)(amino)carbene (CAAC)-stabilized borafluorene radicals have been isolated and characterized by elemental analysis, single-crystal X-ray diffraction, UV/Vis absorption, cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and theoretical studies. Both the CAAC-borafluorene radical (2) and the NHC-borafluorene radical (4) have a considerable amount of spin density localized on the boron atoms (0.322 for 2 and 0.369 for 4). In compound 2, the unpaired electron is also partly delocalized over the CAAC ligand carbene C and N atoms. However, the unpaired electron in compound 4 mainly resides throughout the borafluorene π-system, with significantly less delocalization over the NHC ligand. These results highlight the Lewis base dependent electrostructural tuning of materials-relevant radicals. Notably, this is the first report of crystalline borafluorene radicals, and these species exhibit remarkable solid-state and solution stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...