Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20833, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012338

ABSTRACT

Neurodegenerative diseases, such as Alzheimer's disease (AD) and various types of amyloidosis, are incurable; therefore, understanding the mechanisms of amyloid decomposition is crucial to develop an effective drug against them for future therapies. It has been reported that one out of three people over the age of 85 are suffering from dementia as a comorbidity to AD. Amyloid beta (Aß), the hallmark of AD, transforms structurally from monomers into ß-stranded aggregates (fibrils) via multiple oligomeric states. Astrocytes in the central nervous system secrete the human cystatin C protein (HCC) in response to various proteases and cytokines. The codeposition of Aß and HCC in the brains of patients with AD led to the hypothesis that cystatin C is implicated in the disease process. In this study, we investigate the intermolecular interactions between different atomic structures of fibrils formed by Aß peptides and HCC to understand the pathological aggregation of these polypeptides into neurotoxic oligomers and then amyloid plaques. To characterize the interactions between Aß and HCC, we used a complementary approach based on the combination of small-angle neutron scattering analysis, atomic force microscopy and computational modelling, allowing the exploration of the structures of multicomponent protein complexes. We report here an optimized protocol to study that interaction. The results show a dependency of the sequence length of the Aß peptide on the ability of the associated HCC to disaggregate it.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cystatin C , Humans , Alzheimer Disease/metabolism , Amyloid , Amyloid beta-Peptides/metabolism , Cystatin C/metabolism
2.
Int J Mol Sci ; 23(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35628610

ABSTRACT

Amyloid fibrils have been known for many years. Unfortunately, their fame stems from negative aspects related to amyloid diseases. Nevertheless, due to their properties, they can be used as interesting nanomaterials. Apart from their remarkable stability, amyloid fibrils may be regarded as a kind of a storage medium and as a source of active peptides. In many cases, their structure may guarantee a controlled and slow release of peptides in their active form; therefore, they can be used as a potential nanomaterial in drug delivery systems. In addition, amyloid fibrils display controllable stiffness, flexibility, and satisfactory mechanical strength. In addition, they can be modified and functionalized very easily. Understanding the structure and genesis of amyloid assemblies derived from a broad range of amyloidogenic proteins could help to better understand and use this unique material. One of the factors responsible for amyloid aggregation is the steric zipper. Here, we report the discovery of steric zipper-forming peptides in the sequence of the amyloidogenic protein, human cystatin C (HCC). The ability of short peptides derived from this fragment of HCC to form fibrillar structures with defined self-association characteristics and the factors influencing this aggregation are also presented in this paper.


Subject(s)
Amyloid , Amyloidosis , Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Cystatin C/chemistry , Humans , Peptides/chemistry
3.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299360

ABSTRACT

Nonviral vectors for gene therapy such as lipoplexes are characterized by low toxicity, high biocompatibility, and good transfection efficiency. Specifically, lipoplexes based on polymeric surfactants and phospholipids have great potential as gene carriers due to the increased ability to bind genetic material (multiplied positive electric charge) while lowering undesirable effects (the presence of lipids makes the system more like natural membranes). This study aimed to test the ability to bind and release genetic material by lipoplexes based on trimeric surfactants and lipid formulations of different compositions and to characterize formed complexes by circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). The cytotoxicity of studied lipoplexes was tested on HeLa cells by the MTT cell viability assay and the dye exclusion test (trypan blue). The presence of lipids in the system lowered the surfactant concentration required for complexation (higher efficiency) and reduced the cytotoxicity of lipoplexes. Surfactant/lipids/DNA complexes were more stable than surfactant/DNA complexes. Surfactant molecules induced the genetic material condensation, but the presence of lipids significantly intensified this process. Systems based on trimeric surfactants and lipid formulations, particularly TRI_N and TRI_IMI systems, could be used as delivery carrier, and have proven to be highly effective, nontoxic, and universal for DNA of various lengths.


Subject(s)
Genetic Vectors/genetics , Phospholipids/chemistry , Surface-Active Agents/chemistry , Cell Line, Tumor , Circular Dichroism/methods , DNA/chemistry , Gene Transfer Techniques , HeLa Cells , Humans , Lipids/chemistry , Microscopy, Atomic Force/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...