Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(20): 8803-8814, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38686747

ABSTRACT

Mixed community microalgal wastewater treatment technologies have the potential to advance the limits of technology for biological nutrient recovery while producing a renewable carbon feedstock, but a deeper understanding of their performance is required for system optimization and control. In this study, we characterized the performance of a 568 m3·day-1 Clearas EcoRecover system for tertiary phosphorus removal (and recovery as biomass) at an operating water resource recovery facility (WRRF). The process consists of a (dark) mix tank, photobioreactors (PBRs), and a membrane tank with ultrafiltration membranes for the separation of hydraulic and solids residence times. Through continuous online monitoring, long-term on-site monitoring, and on-site batch experiments, we demonstrate (i) the importance of carbohydrate storage in PBRs to support phosphorus uptake under dark conditions in the mix tank and (ii) the potential for polyphosphate accumulation in the mixed algal communities. Over a 3-month winter period with limited outside influences (e.g., no major upstream process changes), the effluent total phosphorus (TP) concentration was 0.03 ± 0.03 mg-P·L-1 (0.01 ± 0.02 mg-P·L-1 orthophosphate). Core microbial community taxa included Chlorella spp., Scenedesmus spp., and Monoraphidium spp., and key indicators of stable performance included near-neutral pH, sufficient alkalinity, and a diel rhythm in dissolved oxygen.


Subject(s)
Microalgae , Phosphorus , Wastewater , Microalgae/metabolism , Wastewater/chemistry , Waste Disposal, Fluid/methods , Biomass , Water Purification/methods
2.
ACS Omega ; 6(27): 17362-17371, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34278122

ABSTRACT

Cost-effective nutrient sources and dewatering are major obstacles to sustainable, scaled-up cultivation of microalgae. Employing waste resources as sources of nutrients offsets costs for nutrient supplies while adding value through simultaneous waste treatment. Forward osmosis (FO), using simulated reverse osmosis brine, is a low-energy membrane technology that can be employed to efficiently harvest microalgae from a dilute solution. In this study, Scenedesmus obliquus, a green microalga, was cultivated with a fertilizer plant wastewater formula and simulated coal-fired power plant flue gas and then separated through either FO, with reverse osmosis reject model water as the draw solution, or sedimentation. Microalgal batches grown with simulated wastewater removed NH4 + within 2 days and reached nitrogen and phosphorus limitation simultaneously on Day 5. Sparging with the flue gas caused S. obliquus to produce significantly greater quantities of extracellular polymeric substances (30.7 ± 1.8 µg mL-1), which caused flocculation and enhanced settling to an advantageous extent. Five-hour FO trials showed no statistically significant difference (p = 0.65) between water fluxes for cultures grown with simulated flue gas and CO2-supplemented air (3.0 ± 0.1 and 3.0 ± 0.3 LMH, respectively). Reverse salt fluxes were low for all conditions and, remarkably, the rate of reverse salt flux was -1.9 ± 0.6 gMH when the FO feed was culture grown with simulated flue gas. In this work, S. obliquus was cultivated and harvested with potential waste resources.

3.
ACS Omega ; 5(42): 27269-27277, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33134689

ABSTRACT

Favorable microalgal nutrition from waste resources and improved harvesting methods would offset costs for a process that could be scaled up to treat pollution and produce valuable animal feed in lieu of soy protein. Co-benefits include avoidance of carbon dioxide emissions, which may provide an additional revenue stream when carbon markets begin to flourish. To sustainably achieve these goals at scale, barriers to microalgal production such as tolerance for waste streams and dramatic improvement in dewatering and settleability of the microalgae must be overcome. Presently, it is largely assumed that nutritious microalgae, including Scenedesmus obliquus, would be inhibited by SO x and NO x in flue gases and settle slowly as discrete particles. Studies conducted with a 2 L photobioreactor, sparged with simulated coal-fired power plant flue gas, demonstrated that both biomass productivity and settling rates were increased. The average maximum biomass productivity was 700 ± 40 mg L-1 d-1, which significantly exceeded that of the control culture (510 ± 40 mg L-1 d-1). Thirty-minute trials of modeled bulk settling showed rapid coagulation, likely facilitated by extracellular polymeric substances, and compaction when the cultures were grown with simulated emissions. Control cultures, not exposed to the additional toxicants in flue gas, settled as discrete particles and did not show any settling progress within 30 min. Of the SO2 sparged into the cultivation system, (111 ± 4)% was captured as either SO4 2- in the medium or fixed in the S. obliquus biomass. The stress of simulated-emissions exposure decreased the S. obliquus protein contents and altered the amino acid profiles but did not decrease the fraction of methionine, a valuable amino acid in animal feed.

4.
J Vis Exp ; (154)2019 12 19.
Article in English | MEDLINE | ID: mdl-31904020

ABSTRACT

Photobioreactors are illuminated cultivation systems for experiments on phototrophic microorganisms. These systems provide a sterile environment for microalgal cultivation with temperature, pH, and gas composition and flow rate control. At bench-scale, photobioreactors are advantageous to researchers studying microalgal properties, productivity, and growth optimization. At industrial scales, photobioreactors can maintain product purity and improve production efficiency. The video describes the preparation and use of a bench-scale photobioreactor for microalgal cultivation, including the safe use of corrosive gas inputs, and details relevant biomass measurements and biomass productivity calculations. Specifically, the video illustrates microalgal culture storage and preparation for inoculation, photobioreactor assembly and sterilization, biomass concentration measurements, and a logistic model for microalgal biomass productivity with rate calculations including maximum and overall biomass productivities. Additionally, since there is growing interest in experiments to cultivate microalgae using simulated or real waste gas emissions, the video will cover the photobioreactor equipment adaptations necessary to work with corrosive gases and discuss safe sampling in such scenarios.


Subject(s)
Biomass , Gases/analysis , Microalgae/growth & development , Photobioreactors/microbiology , Calibration , Carbon Dioxide/pharmacology , Corrosion , Logistic Models , Microalgae/drug effects , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...