Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Biol (Camb) ; 8(2): 230-242, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26822672

ABSTRACT

Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell-cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and topology can dramatically affect cardiac tissue function even if the constituent cells are themselves similar, and that the proposed method can provide a general strategy to experimentally and computationally investigate when such variation can lead to impaired tissue function.


Subject(s)
Arrhythmias, Cardiac/metabolism , Heart/physiology , Myocytes, Cardiac/cytology , Algorithms , Animals , Anisotropy , Cell Communication , Cells, Cultured , Computer Simulation , Connexin 43/metabolism , Fibronectins/chemistry , Models, Theoretical , Myocardium/metabolism , Rats
2.
Circ Res ; 104(3): 355-64, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19122180

ABSTRACT

Previous studies have postulated an important role for the inwardly rectifying potassium current (I(K1)) in controlling the dynamics of electrophysiological spiral waves responsible for ventricular tachycardia and fibrillation. In this study, we developed a novel tissue model of cultured neonatal rat ventricular myocytes (NRVMs) with uniform or heterogeneous Kir2.1expression achieved by lentiviral transfer to elucidate the role of I(K1) in cardiac arrhythmogenesis. Kir2.1-overexpressed NRVMs showed increased I(K1) density, hyperpolarized resting membrane potential, and increased action potential upstroke velocity compared with green fluorescent protein-transduced NRVMs. Opposite results were observed in Kir2.1-suppressed NRVMs. Optical mapping of uniformly Kir2.1 gene-modified monolayers showed altered conduction velocity and action potential duration compared with nontransduced and empty vector-transduced monolayers, but functional reentrant waves could not be induced. In monolayers with an island of altered Kir2.1 expression, conduction velocity and action potential duration of the locally transduced and nontransduced regions were similar to those of the uniformly transduced and nontransduced monolayers, respectively, and functional reentrant waves could be induced. The waves were anchored to islands of Kir2.1 overexpression and remained stable but dropped in frequency and meandered away from islands of Kir2.1 suppression. In monolayers with an inverse pattern of I(K1) heterogeneity, stable high frequency spiral waves were present with I(K1) overexpression, whereas lower frequency, meandering spiral waves were observed with I(K1) suppression. Our study provides direct evidence for the contribution of I(K1) heterogeneity and level to the genesis and stability of spiral waves and highlights the potential importance of I(K1) as an antiarrhythmia target.


Subject(s)
Myocytes, Cardiac/physiology , Potassium Channels, Inwardly Rectifying/genetics , Tachycardia, Ventricular/physiopathology , Ventricular Fibrillation/physiopathology , Animals , Cells, Cultured , Genetic Heterogeneity , Green Fluorescent Proteins/genetics , Membrane Potentials/physiology , Myocytes, Cardiac/cytology , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...