Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961258

ABSTRACT

Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyze a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behavior to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.

2.
Curr Alzheimer Res ; 20(6): 440-452, 2023.
Article in English | MEDLINE | ID: mdl-37605411

ABSTRACT

INTRODUCTION: A major gap in amyloid-centric theories of Alzheimer's disease (AD) is that even though amyloid fibrils per se are not toxic in vitro, the diagnosis of AD clearly correlates with the density of beta-amyloid (Aß) deposits. Based on our proposed amyloid degradation toxicity hypothesis, we developed a mathematical model explaining this discrepancy. It suggests that cytotoxicity depends on the cellular uptake of soluble Aß rather than on the presence of amyloid aggregates. The dynamics of soluble beta-amyloid in the cerebrospinal fluid (CSF) and the density of Aß deposits is described using a system of differential equations. In the model, cytotoxic damage is proportional to the cellular uptake of Aß, while the probability of an AD diagnosis is defined by the Aß cytotoxicity accumulated over the duration of the disease. After uptake, Aß is concentrated intralysosomally, promoting the formation of fibrillation seeds inside cells. These seeds cannot be digested and are either accumulated intracellularly or exocytosed. Aß starts aggregating on the extracellular seeds and, therefore, decreases in concentration in the interstitial fluid. The dependence of both Aß toxicity and aggregation on the same process-cellular uptake of Aß-explains the correlation between AD diagnosis and the density of amyloid aggregates in the brain. METHODS: We tested the model using clinical data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI), which included records of beta-amyloid concentration in the cerebrospinal fluid (CSF-Aß42) and the density of beta-amyloid deposits measured using positron emission tomography (PET). The model predicts the probability of AD diagnosis as a function of CSF-Aß42 and PET and fits the experimental data at the 95% confidence level. RESULTS: Our study shows that existing clinical data allows for the inference of kinetic parameters describing beta-amyloid turnover and disease progression. Each combination of CSF-Aß42 and PET values can be used to calculate the individual's cellular uptake rate, the effective disease duration, and the accumulated toxicity. We show that natural limitations on these parameters explain the characteristic distribution of the clinical dataset for these two biomarkers in the population. CONCLUSION: The resulting mathematical model interprets the positive correlation between the density of Aß deposits and the probability of an AD diagnosis without assuming any cytotoxicity of the aggregated beta-amyloid. To the best of our knowledge, this model is the first to mechanistically explain the negative correlation between the concentration of Aß42 in the CSF and the probability of an AD diagnosis. Finally, based on the amyloid degradation toxicity hypothesis and the insights provided by mathematical modeling, we propose new pathophysiology-relevant biomarkers to diagnose and predict AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Brain , Positron-Emission Tomography/methods , Amyloid , Amyloidogenic Proteins , Peptide Fragments/toxicity , Peptide Fragments/cerebrospinal fluid
3.
PLoS One ; 17(10): e0276933, 2022.
Article in English | MEDLINE | ID: mdl-36315527

ABSTRACT

Senile plaques, which are mostly composed of beta-amyloid peptide, are the main signature of Alzheimer's disease (AD). Two main forms of beta-amyloid in humans are 40 and 42-amino acid, long; the latter is considered more relevant to AD etiology. The concentration of soluble beta-amyloid-42 (Aß42) in cerebrospinal fluid (CSF-Aß42) and the density of amyloid depositions have a strong negative correlation. However, AD patients have lower CSF-Aß42 levels compared to individuals with normal cognition (NC), even after accounting for this correlation. The goal of this study was to infer deviations of Aß42 metabolism parameters that underlie this difference using data from the Alzheimer's Disease Neuroimaging Initiative cohort. Aß42 is released to the interstitial fluid (ISF) by cells and is removed by several processes. First, growth of insoluble fibrils by aggregation decreases the concentration of soluble beta-amyloid in the ISF. Second, Aß42 is physically transferred from the brain to the CSF and removed with the CSF flow. Finally, there is an intratissue removal of Aß42 ending in proteolysis, which can occur either in the ISF or inside the cells after the peptide is endocytosed. Unlike aggregation, which preserves the peptide in the brain, transfer to the CSF and intratissue proteolysis together represent amyloid removal. Using a kinetic model of Aß42 turnover, we found that compared to NC subjects, AD patients had dramatically increased rates of amyloid removal. A group with late-onset mild cognitive impairment (LMCI) also exhibited a higher rate of amyloid removal; however, this was less pronounced than in the AD group. Estimated parameters in the early-onset MCI group did not differ significantly from those in the NC group. We hypothesize that increased amyloid removal is mediated by Aß42 cellular uptake; this is because CSF flow is not increased in AD patients, while most proteases are intracellular. Aß cytotoxicity depends on both the amount of beta-amyloid internalized by cells and its intracellular conversion into toxic products. We speculate that AD and LMCI are associated with increased cellular amyloid uptake, which leads to faster disease progression. The early-onset MCI (EMCI) patients do not differ from the NC participants in terms of cellular amyloid uptake. Therefore, EMCI may be mediated by the increased production of toxic amyloid metabolites.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Alzheimer Disease/complications , Peptide Fragments/cerebrospinal fluid , Cognitive Dysfunction/complications , Disease Progression , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
4.
Elife ; 112022 07 07.
Article in English | MEDLINE | ID: mdl-35796425

ABSTRACT

Previously our computational modeling studies (Phillips et al., 2019) proposed that neuronal persistent sodium current (INaP) and calcium-activated non-selective cation current (ICAN) are key biophysical factors that, respectively, generate inspiratory rhythm and burst pattern in the mammalian preBötzinger complex (preBötC) respiratory oscillator isolated in vitro. Here, we experimentally tested and confirmed three predictions of the model from new simulations concerning the roles of INaP and ICAN: (1) INaP and ICAN blockade have opposite effects on the relationship between network excitability and preBötC rhythmic activity; (2) INaP is essential for preBötC rhythmogenesis; and (3) ICAN is essential for generating the amplitude of rhythmic output but not rhythm generation. These predictions were confirmed via optogenetic manipulations of preBötC network excitability during graded INaP or ICAN blockade by pharmacological manipulations in slices in vitro containing the rhythmically active preBötC from the medulla oblongata of neonatal mice. Our results support and advance the hypothesis that INaP and ICAN mechanistically underlie rhythm and inspiratory burst pattern generation, respectively, in the isolated preBötC.


Subject(s)
Biological Clocks , Medulla Oblongata , Animals , Biological Clocks/physiology , Mammals , Medulla Oblongata/physiology , Mice , Neurons/physiology , Respiratory Rate , Respiratory System
5.
Neurosci Lett ; 770: 136338, 2022 01 23.
Article in English | MEDLINE | ID: mdl-34767924

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia affecting millions of people. Neuronal death in AD is initiated by oligomeric amyloid-ß (Aß) peptides. Recently, we proposed the amyloid degradation toxicity hypothesis, which explains multiple major observations associated with AD including autophagy failure and a decreased metabolism. According to the hypothesis, the key event in the cellular toxicity of amyloid is the formation of non-selective membrane channels in lysosomal membranes by amyloid fragments that are produced by the digestion of Aß previously absorbed by endocytosis. Electrophysiological data suggest that amyloid-formed channels have different sizes, which can be explained by the fact that channel creating barrel-shaped amyloid aggregates can consist of different number of monomers. To estimate the ability of channels to leak molecules of various molecular weights, we modeled the channels as saline-filled cylinders in non-conductive membranes that pass spheres with a density of average globular proteins. As a basis, we used the conductance distribution taken from the previously published experimental dataset, in which single channels with electrical conductance of up to one nanosiemens were registered. Our calculations show that channels with such a giant conductance can allow for passing macromolecules such as large as lysosomal cathepsins implicated in the activation of apoptosis. The formation of giant channels is disproportionally promoted in an acidic environment. Also, amyloid fragments leaking from permeabilized lysosomes can reach the internal leaflet of the plasma membrane and permeabilize it. We conclude that while dissipation of the proton gradient by any (even smallest) amyloid channels readily explains lysosomal failure, the relatively rare events of lysosomal permeabilization to large macromolecules can be an additional mechanism of cellular death induced by exposure to Aß.


Subject(s)
Amyloid beta-Peptides/metabolism , Lysosomes/metabolism , Membrane Potentials , Amyloid beta-Peptides/toxicity , Apoptosis , Cell Membrane/metabolism , Cell Membrane Permeability , Humans , Lipid Bilayers/metabolism
6.
Exp Physiol ; 106(5): 1181-1195, 2021 05.
Article in English | MEDLINE | ID: mdl-33749038

ABSTRACT

NEW FINDINGS: Cardio-ventilatory coupling refers to the onset of inspiration occurring at a preferential latency following the last heartbeat (HB) in expiration. According to the cardiac-trigger hypothesis, the pulse pressure initiates an inspiration via baroreceptor activation. However, the central neural substrate mediating this coupling remains undefined. Using a combination of animal data, human data and mathematical modelling, this study tests the hypothesis that the HB, by way of pulsatile baroreflex activation, controls the initiation of inspiration that occurs through a rapid neural activation loop from the carotid baroreceptors to Bötzinger complex expiratory neurons. ABSTRACT: Cardio-ventilatory coupling refers to a heartbeat (HB) occurring at a preferred latency prior to the next breath. We hypothesized that the pressure pulse generated by a HB activates baroreceptors that modulate brainstem expiratory neuronal activity and delay the initiation of inspiration. In supine male subjects, we recorded ventilation, electrocardiogram and blood pressure during 20-min epochs of baseline, slow-deep breathing and recovery. In in situ rodent preparations, we recorded brainstem activity in response to pulses of perfusion pressure. We applied a well-established respiratory network model to interpret these data. In humans, the latency between a HB and onset of inspiration was consistent across different breathing patterns. In in situ preparations, a transient pressure pulse during expiration activated a subpopulation of expiratory neurons normally active during post-inspiration, thus delaying the next inspiration. In the model, baroreceptor input to post-inspiratory neurons accounted for the effect. These studies are consistent with baroreflex activation modulating respiration through a pauci-synaptic circuit from baroreceptors to onset of inspiration.


Subject(s)
Pressoreceptors , Respiration , Animals , Baroreflex , Blood Pressure , Heart Rate , Humans , Male , Pressoreceptors/physiology
7.
Front Neurosci ; 14: 598888, 2020.
Article in English | MEDLINE | ID: mdl-33177987

ABSTRACT

Rhythmic limb movements during locomotion are controlled by central pattern generator (CPG) circuits located in the spinal cord. It is considered that these circuits are composed of individual rhythm generators (RGs) for each limb interacting with each other through multiple commissural and long propriospinal circuits. The organization and operation of each RG are not fully understood, and different competing theories exist about interactions between its flexor and extensor components, as well as about left-right commissural interactions between the RGs. The central idea of circuit organization proposed in this study is that with an increase of excitatory input to each RG (or an increase in locomotor speed) the rhythmogenic mechanism of the RGs changes from "flexor-driven" rhythmicity to a "classical half-center" mechanism. We test this hypothesis using our experimental data on changes in duration of stance and swing phases in the intact and spinal cats walking on the ground or tied-belt treadmills (symmetric conditions) or split-belt treadmills with different left and right belt speeds (asymmetric conditions). We compare these experimental data with the results of mathematical modeling, in which simulated CPG circuits operate in similar symmetric and asymmetric conditions with matching or differing control drives to the left and right RGs. The obtained results support the proposed concept of state-dependent changes in RG operation and specific commissural interactions between the RGs. The performed simulations and mathematical analysis of model operation under different conditions provide new insights into CPG network organization and limb coordination during locomotion.

8.
J Appl Physiol (1985) ; 129(5): 1193-1202, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32940558

ABSTRACT

Excessive blood pressure variation is linked to the development of hypertension and other diseases. This study assesses the relative role of respiratory sinus arrhythmia (RSA) and pulse pressure (PP) on the amplitude and timing of blood pressure variability with respiration [Traube-Hering (TH) waves]. We analyzed respiratory, electrocardiogram, and blood pressure traces from healthy, supine male subjects (n = 10, mean age = 26.7 ± 1.4) during 20-min epochs of resting, slow deep breathing (SDB), and recovery. Across all epochs, blood pressure and heart rate (HR) were modulated with respiration and the magnitude of RSA; TH waves increased during SDB. The data were deconstructed using a simple mathematical model of blood pressure to dissect the relative roles of RSA and PP on TH waves. We constructed the time series of the R-wave peaks and compared the recorded TH waves with that predicted by the model. Given that cardiac output is determined by both heart rate and stroke volume, it was surprising that the magnitude of the TH waves could be captured by only HR modulation. However, RSA alone did not accurately predict the timing of TH waves relative to the respiratory cycle. Adding respiratory modulation of PP to the model corrected the phase shift showing the expected pattern of BP rising during inspiration with the peak of the TH wave during early expiration. We conclude that short-term variability of blood pressure referred to as TH waves has at least two independent mechanisms whose interaction forms their pattern: RSA and respiratory-driven changes in PP.NEW & NOTEWORTHY Variability in blood pressure has become an important metric to consider as more is learned about the link between excessive blood pressure variability and adverse health outcomes. In this study using slow deep breathing in human subjects, we found that heart rate and pulse pressure variations have comparable effects on the amplitude of blood pressure waves, and it is the common action of the two that defines the phase relationship between respiration and blood pressure oscillations.


Subject(s)
Blood Pressure , Respiratory Sinus Arrhythmia , Adult , Arrhythmia, Sinus , Electrocardiography , Heart Rate , Humans , Male , Respiration
9.
J Physiol ; 598(21): 4969-4994, 2020 11.
Article in English | MEDLINE | ID: mdl-32621515

ABSTRACT

KEY POINTS: Contraction of abdominal muscles at the end of expiration during metabolic challenges (such as hypercapnia and hypoxia) improves pulmonary ventilation. The emergence of this active expiratory pattern requires the recruitment of the expiratory oscillator located on the ventral surface of the medulla oblongata. Here we show that an inhibitory circuitry located in the Bötzinger complex is an important source of inhibitory drive to the expiratory oscillator. This circuitry, mediated by GABAergic and glycinergic synapses, provides expiratory inhibition that restrains the expiratory oscillator under resting condition and regulates the formation of abdominal expiratory activity during active expiration. By combining experimental and modelling approaches, we propose the organization and connections within the respiratory network that control the changes in the breathing pattern associated with elevated metabolic demand. ABSTRACT: The expiratory neurons of the Bötzinger complex (BötC) provide inhibitory inputs to the respiratory network, which, during eupnoea, are critically important for respiratory phase transition and duration control. Here, we investigated how the BötC neurons interact with the expiratory oscillator located in the parafacial respiratory group (pFRG) and control the abdominal activity during active expiration. Using the decerebrated, arterially perfused in situ preparations of juvenile rats, we recorded the activity of expiratory neurons and performed pharmacological manipulations of the BötC and pFRG during hypercapnia or after the exposure to short-term sustained hypoxia - conditions that generate active expiration. The experimental data were integrated in a mathematical model to gain new insights into the inhibitory connectome within the respiratory central pattern generator. Our results indicate that the BötC neurons may establish mutual connections with the pFRG, providing expiratory inhibition during the first stage of expiration and receiving excitatory inputs during late expiration. Moreover, we found that application of GABAergic and glycinergic antagonists in the BötC caused opposing effects on abdominal expiratory activity, suggesting complex inhibitory circuitry within the BötC. Using mathematical modelling, we propose that the BötC network organization and its interactions with the pFRG restrain abdominal activity under resting conditions and contribute to abdominal expiratory pattern formation during active expiration observed during hypercapnia or after the exposure to short-term sustained hypoxia.


Subject(s)
Medulla Oblongata , Synaptic Transmission , Animals , Hypercapnia , Neurons , Rats , Respiration
10.
J Exp Biol ; 222(Pt 14)2019 07 26.
Article in English | MEDLINE | ID: mdl-31308054

ABSTRACT

Cutaneous sensory feedback from the paw pads plays an important role in regulating body balance, especially in challenging environments like ladder or slope walking. Here, we investigated the contribution of cutaneous sensory feedback from the paw pads to balance control in cats stepping on a split-belt treadmill. Forepaws and hindpaws were anesthetized unilaterally using lidocaine injections. We evaluated body balance in intact and compromised cutaneous feedback conditions during split-belt locomotion with belt-speed ratios of 0.5, 1.0, 1.5 and 2.0. Measures of body balance included step width, relative duration of limb support phases, lateral bias of center of mass (CoM) and margins of static and dynamic stability. In the intact condition, static and dynamic balance declined with increasing belt-speed ratio as a result of a lateral shift of the CoM toward the borders of support on the slower moving belt. Anesthesia of the ipsilateral paws improved locomotor balance with increasing belt-speed ratios by reversing the CoM shift, decreasing the relative duration of the two-limb support phase, increasing the duration of four- or three-limb support phases, and increasing the hindlimb step width and static stability. We observed no changes in most balance measures in anesthetized conditions during tied-belt locomotion at 0.4 m s-1 CoM lateral displacements closely resembled those of the inverted pendulum and of human walking. We propose that unilaterally compromised cutaneous feedback from the paw pads is compensated for by improving lateral balance and by shifting the body toward the anesthetized paws to increase tactile sensation during the stance phase.


Subject(s)
Cats/physiology , Feedback, Sensory , Locomotion , Postural Balance , Animals , Female
11.
PLoS One ; 14(4): e0214926, 2019.
Article in English | MEDLINE | ID: mdl-30978216

ABSTRACT

Motor adaptation to perturbations is provided by learning mechanisms operating in the cerebellum and basal ganglia. The cerebellum normally performs motor adaptation through supervised learning using information about movement error provided by visual feedback. However, if visual feedback is critically distorted, the system may disengage cerebellar error-based learning and switch to reinforcement learning mechanisms mediated by basal ganglia. Yet, the exact conditions and mechanisms of cerebellum and basal ganglia involvement in motor adaptation remain unknown. We use mathematical modeling to simulate control of planar reaching movements that relies on both error-based and non-error-based learning mechanisms. We show that for learning to be efficient only one of these mechanisms should be active at a time. We suggest that switching between the mechanisms is provided by a special circuit that effectively suppresses the learning process in one structure and enables it in the other. To do so, this circuit modulates learning rate in the cerebellum and dopamine release in basal ganglia depending on error-based learning efficiency. We use the model to explain and interpret experimental data on error- and non-error-based motor adaptation under different conditions.


Subject(s)
Adaptation, Physiological/physiology , Basal Ganglia/physiology , Cerebellum/physiology , Models, Neurological , Movement/physiology , Humans
12.
Neuroscience ; 406: 467-486, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30930131

ABSTRACT

Obstructive sleep apnea patients face episodes of chronic intermittent hypoxia (CIH), which has been suggested as a causative factor for increased sympathetic activity (SNA) and hypertension. Female rats exposed to CIH develop hypertension and exhibit changes in respiratory-sympathetic coupling, marked by an increase in the inspiratory modulation of SNA. We tested the hypothesis that enhanced inspiratory-modulation of SNA is dependent on carotid bodies (CBs) and are associated with changes in respiratory network activity. For this, in CIH-female rats we evaluated the effect of CBs ablation on respiratory-sympathetic coupling, recorded from respiratory neurons in the working heart-brainstem preparation and from NTS neurons in brainstem slices. CIH-female rats had an increase in peripheral chemoreflex response and in spontaneous excitatory neurotransmission in NTS. CBs ablation prevents the increase in inspiratory modulation of SNA in CIH-female rats. Pre-inspiratory/inspiratory (Pre-I/I) neurons of CIH-female rats have a reduced firing frequency. Post-inspiratory neurons are active for a longer period during expiration in CIH-female rats. Further, using the computational model of a brainstem respiratory-sympathetic network, we demonstrate that a reduction in Pre-I/I neuron firing frequency simulates the enhanced inspiratory SNA modulation in CIH-female rats. We conclude that changes in respiratory-sympathetic coupling in CIH-female rats is dependent on CBs and it is associated with changes in firing properties of specific respiratory neurons types.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hypoxia/physiopathology , Inhalation/physiology , Nerve Net/physiopathology , Neurons/physiology , Animals , Carotid Body/physiopathology , Female , Rats , Rats, Wistar
13.
Front Neural Circuits ; 13: 10, 2019.
Article in English | MEDLINE | ID: mdl-30846930

ABSTRACT

In this study, we explore the functional role of striatal cholinergic interneurons, hereinafter referred to as tonically active neurons (TANs), via computational modeling; specifically, we investigate the mechanistic relationship between TAN activity and dopamine variations and how changes in this relationship affect reinforcement learning in the striatum. TANs pause their tonic firing activity after excitatory stimuli from thalamic and cortical neurons in response to a sensory event or reward information. During the pause striatal dopamine concentration excursions are observed. However, functional interactions between the TAN pause and striatal dopamine release are poorly understood. Here we propose a TAN activity-dopamine relationship model and demonstrate that the TAN pause is likely a time window to gate phasic dopamine release and dopamine variations reciprocally modulate the TAN pause duration. Furthermore, this model is integrated into our previously published model of reward-based motor adaptation to demonstrate how phasic dopamine release is gated by the TAN pause to deliver reward information for reinforcement learning in a timely manner. We also show how TAN-dopamine interactions are affected by striatal dopamine deficiency to produce poor performance of motor adaptation.


Subject(s)
Cholinergic Neurons/physiology , Computer Simulation , Corpus Striatum/cytology , Models, Neurological , Reinforcement, Psychology , Animals , Dopamine/metabolism , Humans , Neural Pathways/physiology
14.
Elife ; 82019 03 25.
Article in English | MEDLINE | ID: mdl-30907727

ABSTRACT

An autorhythmic population of excitatory neurons in the brainstem pre-Bötzinger complex is a critical component of the mammalian respiratory oscillator. Two intrinsic neuronal biophysical mechanisms-a persistent sodium current ([Formula: see text]) and a calcium-activated non-selective cationic current ([Formula: see text])-were proposed to individually or in combination generate cellular- and circuit-level oscillations, but their roles are debated without resolution. We re-examined these roles in a model of a synaptically connected population of excitatory neurons with [Formula: see text] and [Formula: see text]. This model robustly reproduces experimental data showing that rhythm generation can be independent of [Formula: see text] activation, which determines population activity amplitude. This occurs when [Formula: see text] is primarily activated by neuronal calcium fluxes driven by synaptic mechanisms. Rhythm depends critically on [Formula: see text] in a subpopulation forming the rhythmogenic kernel. The model explains how the rhythm and amplitude of respiratory oscillations involve distinct biophysical mechanisms.


Subject(s)
Biological Clocks/physiology , Biophysical Phenomena , Brain Stem/physiology , Models, Neurological , Nerve Net/physiology , Pulmonary Ventilation/physiology , Animals , Calcium/metabolism , Computer Simulation , Humans , Neurons/metabolism , Sodium/metabolism
15.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L891-L909, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30188747

ABSTRACT

The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.


Subject(s)
Cell Nucleus/physiology , Exhalation/physiology , Neurons/physiology , Sympathetic Nervous System/physiopathology , Animals , Carbon Dioxide/metabolism , Cell Nucleus/metabolism , Hydrogen-Ion Concentration , Hypercapnia/metabolism , Hypercapnia/physiopathology , Male , Neurons/metabolism , Phrenic Nerve/metabolism , Phrenic Nerve/physiopathology , Rats , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Sympathetic Nervous System/metabolism
16.
Temperature (Austin) ; 5(1): 22-35, 2018.
Article in English | MEDLINE | ID: mdl-29687042

ABSTRACT

Tissue temperature increases, when oxidative metabolism is boosted. The source of nutrients and oxygen for this metabolism is the blood. The blood also cools down the tissue, and this is the only cooling mechanism, when direct dissipation of heat from the tissue to the environment is insignificant, e.g., in the brain. While this concept is relatively simple, it has not been described quantitatively. The purpose of the present work was to answer two questions: 1) to what extent can oxidative metabolism make the organ tissue warmer than the body core, and, 2) how quickly are changes in the local metabolism reflected in the temperature of the tissue? Our theoretical analysis demonstrates that, at equilibrium, given that heat exchange with the organ is provided by the blood, the temperature difference between the organ tissue and the arterial blood is proportional to the arteriovenous difference in oxygen content, does not depend on the blood flow, and cannot exceed 1.3oC. Unlike the equilibrium temperature difference, the rate of change of the local temperature, with respect to time, does depend on the blood flow. In organs with high perfusion rates, such as the brain and muscles, temperature changes occur on a time scale of a few minutes. In organs with low perfusion rates, such changes may have characteristic time constants of tens or hundreds of minutes. Our analysis explains, why arterial blood temperature is the main determinant of the temperature of tissues with limited heat exchange, such as the brain.

17.
PLoS Comput Biol ; 14(4): e1006148, 2018 04.
Article in English | MEDLINE | ID: mdl-29698394

ABSTRACT

The circuit organization within the mammalian brainstem respiratory network, specifically within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes, and the roles of these circuits in respiratory pattern generation are continuously debated. We address these issues with a combination of optogenetic experiments and modeling studies. We used transgenic mice expressing channelrhodopsin-2 under the VGAT-promoter to investigate perturbations of respiratory circuit activity by site-specific photostimulation of inhibitory neurons within the pre-BötC or BötC. The stimulation effects were dependent on the intensity and phase of the photostimulation. Specifically: (1) Low intensity (≤ 1.0 mW) pulses delivered to the pre-BötC during inspiration did not terminate activity, whereas stronger stimulations (≥ 2.0 mW) terminated inspiration. (2) When the pre-BötC stimulation ended in or was applied during expiration, rebound activation of inspiration occurred after a fixed latency. (3) Relatively weak sustained stimulation (20 Hz, 0.5-2.0 mW) of pre-BötC inhibitory neurons increased respiratory frequency, while a further increase of stimulus intensity (> 3.0 mW) reduced frequency and finally (≥ 5.0 mW) terminated respiratory oscillations. (4) Single pulses (0.2-5.0 s) applied to the BötC inhibited rhythmic activity for the duration of the stimulation. (5) Sustained stimulation (20 Hz, 0.5-3.0 mW) of the BötC reduced respiratory frequency and finally led to apnea. We have revised our computational model of pre-BötC and BötC microcircuits by incorporating an additional population of post-inspiratory inhibitory neurons in the pre-BötC that interacts with other neurons in the network. This model was able to reproduce the above experimental findings as well as previously published results of optogenetic activation of pre-BötC or BötC neurons obtained by other laboratories. The proposed organization of pre-BötC and BötC circuits leads to testable predictions about their specific roles in respiratory pattern generation and provides important insights into key circuit interactions operating within brainstem respiratory networks.


Subject(s)
Models, Neurological , Respiratory Center/physiology , Animals , Central Pattern Generators/physiology , Computational Biology , Computer Simulation , Connectome , Electrophysiological Phenomena , Mice , Mice, Transgenic , Optogenetics , Photic Stimulation , Respiratory Center/cytology , Respiratory Physiological Phenomena , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
18.
Am J Physiol Regul Integr Comp Physiol ; 314(1): R43-R48, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28877870

ABSTRACT

Vital parameters of living organisms exhibit circadian rhythmicity. Although rats are nocturnal animals, most of the studies involving rats are performed during the day. The objective of this study was to examine the circadian variability of the body temperature responses to methamphetamine. Body temperature was recorded in male Sprague-Dawley rats that received intraperitoneal injections of methamphetamine (Meth, 1 or 5 mg/kg) or saline at 10 AM or at 10 PM. The baseline body temperature at night was 0.8°C higher than during the day. Both during the day and at night, 1 mg/kg of Meth induced monophasic hyperthermia. However, the maximal temperature increase at night was 50% smaller than during the daytime. Injection of 5 mg/kg of Meth during the daytime caused a delayed hyperthermic response. In contrast, the same dose at night produced responses with a tendency toward a decrease of body temperature. Using mathematical modeling, we previously showed that the complex dose dependence of the daytime temperature responses to Meth results from an interplay between inhibitory and excitatory drives. In this study, using our model, we explain the suppression of the hyperthermia in response to Meth at night. First, we found that the baseline activity of the excitatory drive is greater at night. It appears partially saturated and thus is additionally activated by Meth to a lesser extent. Therefore, the excitatory component causes less hyperthermia or becomes overpowered by the inhibitory drive in response to the higher dose. Second, at night the injection of Meth results in reduction of the equilibrium body temperature, leading to gradual cooling counteracting hyperthermia.


Subject(s)
Body Temperature Regulation/drug effects , Brain/drug effects , Central Nervous System Stimulants/pharmacology , Circadian Rhythm/drug effects , Methamphetamine/pharmacology , Animals , Bayes Theorem , Brain/physiology , Dose-Response Relationship, Drug , Male , Models, Neurological , Neural Pathways/drug effects , Neural Pathways/physiology , Rats, Sprague-Dawley , Time Factors
19.
J Neurophysiol ; 119(2): 401-412, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29070631

ABSTRACT

Coordination of respiratory pump and valve muscle activity is essential for normal breathing. A hallmark respiratory response to hypercapnia and hypoxia is the emergence of active exhalation, characterized by abdominal muscle pumping during the late one-third of expiration (late-E phase). Late-E abdominal activity during hypercapnia has been attributed to the activation of expiratory neurons located within the parafacial respiratory group (pFRG). However, the mechanisms that control emergence of active exhalation, and its silencing in restful breathing, are not completely understood. We hypothesized that inputs from the Kölliker-Fuse nucleus (KF) control the emergence of late-E activity during hypercapnia. Previously, we reported that reversible inhibition of the KF reduced postinspiratory (post-I) motor output to laryngeal adductor muscles and brought forward the onset of hypercapnia-induced late-E abdominal activity. Here we explored the contribution of the KF for late-E abdominal recruitment during hypercapnia by pharmacologically disinhibiting the KF in in situ decerebrate arterially perfused rat preparations. These data were combined with previous results and incorporated into a computational model of the respiratory central pattern generator. Disinhibition of the KF through local parenchymal microinjections of gabazine (GABAA receptor antagonist) prolonged vagal post-I activity and inhibited late-E abdominal output during hypercapnia. In silico, we reproduced this behavior and predicted a mechanism in which the KF provides excitatory drive to post-I inhibitory neurons, which in turn inhibit late-E neurons of the pFRG. Although the exact mechanism proposed by the model requires testing, our data confirm that the KF modulates the formation of late-E abdominal activity during hypercapnia. NEW & NOTEWORTHY The pons is essential for the formation of the three-phase respiratory pattern, controlling the inspiratory-expiratory phase transition. We provide functional evidence of a novel role for the Kölliker-Fuse nucleus (KF) controlling the emergence of abdominal expiratory bursts during active expiration. A computational model of the respiratory central pattern generator predicts a possible mechanism by which the KF interacts indirectly with the parafacial respiratory group and exerts an inhibitory effect on the expiratory conditional oscillator.


Subject(s)
Hypercapnia/physiopathology , Kolliker-Fuse Nucleus/physiology , Peripheral Nerves/physiology , Respiration , Animals , Central Pattern Generators/physiology , Evoked Potentials, Motor , Kolliker-Fuse Nucleus/physiopathology , Male , Models, Neurological , Peripheral Nerves/physiopathology , Rats , Rats, Wistar , Respiratory Muscles/innervation
20.
PLoS One ; 12(6): e0179288, 2017.
Article in English | MEDLINE | ID: mdl-28632736

ABSTRACT

The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.


Subject(s)
Arm/physiology , Elbow Joint/physiology , Motor Cortex/physiology , Motor Neurons/physiology , Movement/physiology , Muscle, Skeletal/physiology , Humans , Muscle Contraction
SELECTION OF CITATIONS
SEARCH DETAIL
...