Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892654

ABSTRACT

The culture of primary intestinal epithelia cells is not possible in a normal culture system. In 2009 a three-dimensional culture system of intestinal stem cells was established that shows many of the physiological features of the small intestine, such as crypt-villus structure, stem cell niche and all types of differentiated intestinal epithelial cells. These enteroids can be used to analyze biology of intestinal stem cells, gut homeostasis and the development of diseases. They also give the possibility to reduce animal numbers, as enteroids can be cryo-conserved and cultivated for many passages. To investigate the influence of genes such as NADPH oxidases on the gut homeostasis, transgenic approached are the method of choice. The generation of enteroids from knockout mice allows real-time observations of knockout effects. Often conditional knockout or overexpression strategies using inducible Cre recombinase are applied to avoid effects of adaption to the knockout. However, the Cre recombinase has many known caveats from unspecific binding and its endonuclease activity. In this study, we show that although NADPH oxidases are important for in vivo differentiation and proliferation of the intestine, their expression is drastically reduced in the organoid system. Activation of Cre recombinase by 4-hydroxy tamoxifen in freshly isolated enteroids, independently of floxed genes, leads to decreased diameter of organoids. This effect is concentration-dependent and is caused by reduced cell proliferation and induction of apoptosis and DNA damage. In contrast, constitutive expression of Cre has no impact on the enteroids. Therefore, reduction of tamoxifen concentration and treatment duration should be carefully titrated, and appropriate controls are necessary.

2.
Inflamm Bowel Dis ; 26(8): 1166-1176, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32064493

ABSTRACT

BACKGROUND: Genetic defects of pediatric-onset inflammatory bowel disease (IBD) provide critical insights into molecular factors controlling intestinal homeostasis. NOX1 has been recently recognized as a major source of reactive oxygen species (ROS) in human colonic epithelial cells. Here we assessed the functional consequences of human NOX1 deficiency with respect to wound healing and epithelial migration by studying pediatric IBD patients presenting with a stop-gain mutation in NOX1. METHODS: Functional characterization of the NOX1 variant included ROS generation, wound healing, 2-dimensional collective chemotactic migration, single-cell planktonic migration in heterologous cell lines, and RNA scope and immunohistochemistry of paraffin-embedded patient tissue samples. RESULTS: Using exome sequencing, we identified a stop-gain mutation in NOX1 (c.160C>T, p.54R>*) in patients with pediatric-onset IBD. Our studies confirmed that loss-of-function of NOX1 causes abrogated ROS activity, but they also provided novel mechanistic insights into human NOX1 deficiency. Cells that were NOX1-mutant showed impaired wound healing and attenuated 2-dimensional collective chemotactic migration. High-resolution microscopy of the migrating cell edge revealed a reduced density of filopodial protrusions with altered focal adhesions in NOX1-deficient cells, accompanied by reduced phosphorylation of p190A. Assessment of single-cell planktonic migration toward an epidermal growth factor gradient showed that NOX1 deficiency is associated with altered migration dynamics with loss of directionality and altered cell-cell interactions. CONCLUSIONS: Our studies on pediatric-onset IBD patients with a rare sequence variant in NOX1 highlight that human NOX1 is involved in regulating wound healing by altering epithelial cytoskeletal dynamics at the leading edge and directing cell migration.


Subject(s)
Cell Movement/genetics , Inflammatory Bowel Diseases/genetics , Intestinal Mucosa/cytology , NADPH Oxidase 1/deficiency , Wound Healing/genetics , Adolescent , Adult , Cell Line , Child , Cytoskeletal Proteins/metabolism , Female , Humans , Male , Mutation , Young Adult
3.
Cardiovasc Res ; 116(2): 262-268, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31393561

ABSTRACT

The differentiation of stem cells into endothelial cells involves the modulation of highly interconnected metabolic and epigenetic processes. Therefore, the differentiation of endothelial cells is a tightly controlled process, which is adjusted at multiple levels, meaning that even the smallest variation can result in major consequences. Reactive oxygen species (ROS) represent a group of second messengers that can interfere with both metabolic and epigenetic processes. Besides their generation by mitochondria, ROS are produced in a controlled manner by the family of NADPH oxidases. The different members of the NADPH oxidase family produce superoxide anions or hydrogen peroxide. Due to the specific sub-cellular localization of the different NADPH oxidases, ROS are produced at diverse sites in the cell, such as the plasma membrane or the endoplasmic reticulum. Once produced, ROS interfere with proteins, lipids, and DNA to modulate intracellular signal cascades. Accordingly, ROS represent a group of readily available and specifically localized modulators of the highly sophisticated signalling network that eventually leads to the differentiation of stem cells into endothelial cells. This review focuses on the role of NADPH oxidases in the differentiation of stem cells into endothelial cells.


Subject(s)
Cell Differentiation , Endothelial Progenitor Cells/enzymology , NADPH Oxidases/metabolism , Animals , Humans , Reactive Oxygen Species/metabolism , Signal Transduction
4.
Front Immunol ; 9: 973, 2018.
Article in English | MEDLINE | ID: mdl-29867954

ABSTRACT

Aim: Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut. Results: NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells. Conclusion: NoxO1 affects colon epithelium homeostasis and prevents inflammation.


Subject(s)
Cell Proliferation , Colon/cytology , Epithelial Cells/cytology , Homeostasis , Proteins/genetics , Reactive Oxygen Species/metabolism , Adaptor Proteins, Signal Transducing , Animals , Apoptosis , Colitis/chemically induced , Colonic Neoplasms/chemically induced , Disease Models, Animal , Inflammation , Mice , Mice, Knockout , NADPH Oxidase 1/genetics , NADPH Oxidase 1/immunology , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Proteins/immunology
5.
Redox Biol ; 15: 12-21, 2018 05.
Article in English | MEDLINE | ID: mdl-29195137

ABSTRACT

AIM: NADPH oxidases are important sources of reactive oxygen species (ROS). Several Nox homologues are present together in the vascular system but whether they exhibit crosstalk at the activity level is unknown. To address this, vessel function of knockout mice for the cytosolic Nox organizer proteins p47phox, NoxO1 and a p47phox-NoxO1-double knockout were studied under normal condition and during streptozotocin-induced diabetes. RESULTS: In the mouse aorta, mRNA expression for NoxO1 was predominant in smooth muscle and endothelial cells, whereas p47phox was markedly expressed in adventitial cells comprising leukocytes and tissue resident macrophages. Knockout of either NoxO1 or p47phox resulted in lower basal blood pressure. Deletion of any of the two subunits also prevented diabetes-induced vascular dysfunction. mRNA expression analysis by MACE (Massive Analysis of cDNA ends) identified substantial gene expression differences between the mouse lines and in response to diabetes. Deletion of p47phox induced inflammatory activation with increased markers of myeloid cells and cytokine and chemokine induction. In contrast, deletion of NoxO1 resulted in an attenuated interferon gamma signature and reduced expression of genes related to antigen presentation. This aspect was also reflected by a reduced number of circulating lymphocytes in NoxO1-/- mice. INNOVATION AND CONCLUSION: ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.


Subject(s)
Diabetes Mellitus, Experimental/genetics , NADPH Oxidases/genetics , Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Aorta/metabolism , Aorta/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Endothelial Cells/metabolism , Gene Expression , Humans , Lymphocytes/metabolism , Lymphocytes/pathology , Mice , Mice, Knockout , NADP/metabolism , NADPH Oxidases/metabolism , Protein Binding , Reactive Oxygen Species/metabolism
6.
Circulation ; 136(1): 65-79, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28351900

ABSTRACT

BACKGROUND: The angiogenic function of endothelial cells is regulated by numerous mechanisms, but the impact of long noncoding RNAs (lncRNAs) has hardly been studied. We set out to identify novel and functionally important endothelial lncRNAs. METHODS: Epigenetically controlled lncRNAs in human umbilical vein endothelial cells were searched by exon-array analysis after knockdown of the histone demethylase JARID1B. Molecular mechanisms were investigated by RNA pulldown and immunoprecipitation, mass spectrometry, microarray, several knockdown approaches, CRISPR-Cas9, assay for transposase-accessible chromatin sequencing, and chromatin immunoprecipitation in human umbilical vein endothelial cells. Patient samples from lung and tumors were studied for MANTIS expression. RESULTS: A search for epigenetically controlled endothelial lncRNAs yielded lncRNA n342419, here termed MANTIS, as the most strongly regulated lncRNA. Controlled by the histone demethylase JARID1B, MANTIS was downregulated in patients with idiopathic pulmonary arterial hypertension and in rats treated with monocrotaline, whereas it was upregulated in carotid arteries of Macaca fascicularis subjected to atherosclerosis regression diet, and in endothelial cells isolated from human glioblastoma patients. CRISPR/Cas9-mediated deletion or silencing of MANTIS with small interfering RNAs or GapmeRs inhibited angiogenic sprouting and alignment of endothelial cells in response to shear stress. Mechanistically, the nuclear-localized MANTIS lncRNA interacted with BRG1, the catalytic subunit of the switch/sucrose nonfermentable chromatin-remodeling complex. This interaction was required for nucleosome remodeling by keeping the ATPase function of BRG1 active. Thereby, the transcription of key endothelial genes such as SOX18, SMAD6, and COUP-TFII was regulated by ensuring efficient RNA polymerase II machinery binding. CONCLUSION: MANTIS is a differentially regulated novel lncRNA facilitating endothelial angiogenic function.


Subject(s)
CRISPR-Cas Systems/physiology , Epigenesis, Genetic/physiology , Human Umbilical Vein Endothelial Cells/physiology , Microvessels/physiology , Neovascularization, Physiologic/physiology , RNA, Long Noncoding/biosynthesis , Animals , Cell Line , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Jumonji Domain-Containing Histone Demethylases/biosynthesis , Jumonji Domain-Containing Histone Demethylases/genetics , Macaca fascicularis , Male , Mice , Mice, SCID , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , RNA, Long Noncoding/genetics , Rats , Rats, Sprague-Dawley , Repressor Proteins/biosynthesis , Repressor Proteins/genetics
7.
Free Radic Biol Med ; 102: 57-66, 2017 01.
Article in English | MEDLINE | ID: mdl-27863990

ABSTRACT

Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse (Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase, cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However, POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells. Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox. IN CONCLUSION: the cytochrome P450 system accounts for the majority of the signal of Nox activity chemiluminescence based assays.


Subject(s)
Acridines/metabolism , Angiotensin II/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome b Group/genetics , NADPH Oxidases/genetics , NADPH-Ferrihemoprotein Reductase/genetics , Acridines/chemistry , Animals , Cytochrome P-450 Enzyme System/metabolism , HEK293 Cells , Humans , Luminescence , Membranes/chemistry , Membranes/metabolism , Mice , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , NADP/metabolism , NADPH Oxidase 1/genetics , NADPH Oxidase 2/genetics , NADPH Oxidase 4/genetics , NADPH Oxidases/metabolism , Oxidation-Reduction , Rats , Reactive Oxygen Species/metabolism
8.
Arterioscler Thromb Vasc Biol ; 36(8): 1558-65, 2016 08.
Article in English | MEDLINE | ID: mdl-27283741

ABSTRACT

OBJECTIVE: Reactive oxygen species generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases contribute to angiogenesis and vascular repair. NADPH oxidase organizer 1 (NoxO1) is a cytosolic protein facilitating assembly of constitutively active NADPH oxidases. We speculate that NoxO1 also contributes to basal reactive oxygen species formation in the vascular system and thus modulates angiogenesis. APPROACH AND RESULTS: A NoxO1 knockout mouse was generated, and angiogenesis was studied in cultured cells and in vivo. Angiogenesis of the developing retina and after femoral artery ligation was increased in NoxO1(-/-) when compared with wild-type animals. Spheroid outgrowth assays revealed greater angiogenic capacity of NoxO1(-/-) lung endothelial cells (LECs) and a more tip-cell-like phenotype than wild-type LECs. Usually signaling by the Notch pathway switches endothelial cells from a tip into a stalk cell phenotype. NoxO1(-/-) LECs exhibited attenuated Notch signaling as a consequence of an attenuated release of the Notch intracellular domain on ligand stimulation. This release is mediated by proteolytic cleavage involving the α-secretase ADAM17. For maximal activity, ADAM17 has to be oxidized, and overexpression of NoxO1 promoted this mode of activation. Moreover, the activity of ADAM17 was reduced in NoxO1(-/-) LECs when compared with wild-type LECs. CONCLUSIONS: NoxO1 stimulates α-secretase activity probably through reactive oxygen species-mediated oxidation. Deletion of NoxO1 attenuates Notch signaling and thereby promotes a tip-cell phenotype that results in increased angiogenesis.


Subject(s)
Endothelial Cells/enzymology , Ischemia/enzymology , Muscle, Skeletal/blood supply , NADH, NADPH Oxidoreductases/metabolism , Neovascularization, Physiologic , Reactive Oxygen Species/metabolism , Retinal Neovascularization/enzymology , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Genotype , Hindlimb , Ischemia/genetics , Ischemia/physiopathology , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , NADH, NADPH Oxidoreductases/deficiency , NADH, NADPH Oxidoreductases/genetics , NADPH Oxidase 1 , NADPH Oxidases/deficiency , NADPH Oxidases/genetics , Oxidative Stress , Phenotype , Receptors, Notch/metabolism , Regional Blood Flow , Retinal Neovascularization/genetics , Retinal Neovascularization/physiopathology , Signal Transduction , Time Factors
9.
PLoS One ; 11(1): e0146645, 2016.
Article in English | MEDLINE | ID: mdl-26751588

ABSTRACT

Epigenetic marks critically control gene expression and thus the cellular activity state. The functions of many epigenetic modifiers in the vascular system have not yet been studied. We screened for histone modifiers in endothelial cells and observed a fairly high expression of the histone plant homeodomain finger protein 8 (PHF8). Given its high expression, we hypothesize that this histone demethylase is important for endothelial cell function. Overexpression of PHF8 catalyzed the removal of methyl-groups from histone 3 lysine 9 (H3K9) and H4K20, whereas knockdown of the enzyme increased H3K9 methylation. Knockdown of PHF8 by RNAi also attenuated endothelial proliferation and survival. As a functional readout endothelial migration and tube formation was studied. PHF8 siRNA attenuated the capacity for migration and developing of capillary-like structures. Given the impact of PHF8 on cell cycle genes, endothelial E2F transcription factors were screened, which led to the identification of the gene repressor E2F4 to be controlled by PHF8. Importantly, PHF8 maintains E2F4 but not E2F1 expression in endothelial cells. Consistently, chromatin immunoprecipitation revealed that PHF8 reduces the H3K9me2 level at the E2F4 transcriptional start site, demonstrating a direct function of PHF8 in endothelial E2F4 gene regulation. Conclusion: PHF8 by controlling E2F4 expression maintains endothelial function.


Subject(s)
Cell Movement , E2F4 Transcription Factor/metabolism , Endothelial Cells/cytology , Histone Demethylases/metabolism , Transcription Factors/metabolism , Apoptosis , Catalysis , Cell Line , Cell Proliferation , Cell Survival , DNA Methylation , Endothelial Cells/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Histones/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Microcirculation , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...