Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Med Chem ; 61(3): 1153-1163, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29342358

ABSTRACT

ABT-072 is a non-nucleoside HCV NS5B polymerase inhibitor that was discovered as part of a program to identify new direct-acting antivirals (DAAs) for the treatment of HCV infection. This compound was identified during a medicinal chemistry effort to improve on an original lead, inhibitor 1, which we described in a previous publication. Replacement of the amide linkage in 1 with a trans-olefin resulted in improved compound permeability and solubility and provided much better pharmacokinetic properties in preclinical species. Replacement of the dihydrouracil in 1 with an N-linked uracil provided better potency in the genotype 1 replicon assay. Results from phase 1 clinical studies supported once-daily oral dosing with ABT-072 in HCV infected patients. A phase 2 clinical study that combined ABT-072 with the HCV protease inhibitor ABT-450 provided a sustained virologic response at 24 weeks after dosing (SVR24) in 10 of 11 patients who received treatment.


Subject(s)
Cytosine/analogs & derivatives , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Stilbenes/chemistry , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Biological Availability , Chemistry Techniques, Synthetic , Cytosine/chemical synthesis , Cytosine/chemistry , Cytosine/pharmacokinetics , Cytosine/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Permeability , Stereoisomerism , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Tissue Distribution , Viral Nonstructural Proteins/chemistry
2.
Antimicrob Agents Chemother ; 59(2): 988-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451053

ABSTRACT

The development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively. In vitro, the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log10 was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.).


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Hepacivirus/drug effects , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Cyclopropanes , Hepatitis C/drug therapy , Humans , Lactams, Macrocyclic , Proline/analogs & derivatives , Sulfonamides
3.
Antimicrob Agents Chemother ; 59(2): 979-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451055

ABSTRACT

Ombitasvir (ABT-267) is a hepatitis C virus (HCV) NS5A inhibitor with picomolar potency, pan-genotypic activity, and 50% effective concentrations (EC50s) of 0.82 to 19.3 pM against HCV genotypes 1 to 5 and 366 pM against genotype 6a. Ombitasvir retained these levels of potency against a panel of 69 genotype 1 to 6 chimeric replicons containing the NS5A gene derived from HCV-infected patients, despite the existence of natural sequence diversity within NS5A. In vitro resistance selection identified variants that conferred resistance to ombitasvir in the HCV NS5A gene at amino acid positions 28, 30, 31, 58, and 93 in genotypes 1 to 6. Ombitasvir was evaluated in vivo in a 3-day monotherapy study in 12 HCV genotype 1-infected patients at 5, 25, 50, or 200 mg dosed once daily. All patients in the study were HCV genotype 1a infected and were without preexisting resistant variants at baseline as determined by clonal sequencing. Decreases in HCV RNA up to 3.1 log10 IU/ml were observed. Resistance-associated variants at position 28, 30, or 93 in NS5A were detected in patient samples 48 hours after the first dose. Clonal sequencing analysis indicated that wild-type virus was largely suppressed by ombitasvir during 3-day monotherapy, and at doses higher than 5 mg, resistant variant M28V was also suppressed. Ombitasvir was well tolerated at all doses, and there were no serious or severe adverse events. These data support clinical development of ombitasvir in combination with inhibitors targeting HCV NS3/4A protease (ABT-450 with ritonavir) and HCV NS5B polymerase (ABT-333, dasabuvir) for the treatment of chronic HCV genotype 1 infection. (Study M12-116 is registered at ClinicalTrials.gov under registration no. NCT01181427.).


Subject(s)
Anilides/therapeutic use , Antiviral Agents/therapeutic use , Carbamates/therapeutic use , Hepatitis C/drug therapy , Cell Line , Drug Resistance, Viral , Hepacivirus/drug effects , Humans , Proline , Valine
4.
Antimicrob Agents Chemother ; 59(3): 1505-11, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25534735

ABSTRACT

Dasabuvir (ABT-333) is a nonnucleoside inhibitor of the RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) NS5B gene. Dasabuvir inhibited recombinant NS5B polymerases derived from HCV genotype 1a and 1b clinical isolates, with 50% inhibitory concentration (IC50) values between 2.2 and 10.7 nM, and was at least 7,000-fold selective for the inhibition of HCV genotype 1 polymerases over human/mammalian polymerases. In the HCV subgenomic replicon system, dasabuvir inhibited genotype 1a (strain H77) and 1b (strain Con1) replicons with 50% effective concentration (EC50) values of 7.7 and 1.8 nM, respectively, with a 13-fold decrease in inhibitory activity in the presence of 40% human plasma. This level of activity was retained against a panel of chimeric subgenomic replicons that contained HCV NS5B genes from 22 genotype 1 clinical isolates from treatment-naive patients, with EC50s ranging between 0.15 and 8.57 nM. Maintenance of replicon-containing cells in medium containing dasabuvir at concentrations 10-fold or 100-fold greater than the EC50 resulted in selection of resistant replicon clones. Sequencing of the NS5B coding regions from these clones revealed the presence of variants, including C316Y, M414T, Y448C, Y448H, and S556G, that are consistent with binding to the palm I site of HCV polymerase. Consequently, dasabuvir retained full activity against replicons known to confer resistance to other polymerase inhibitors, including the S282T variant in the nucleoside binding site and the M423T, P495A, P495S, and V499A single variants in the thumb domain. The use of dasabuvir in combination with inhibitors targeting HCV NS3/NS4A protease (ABT-450 with ritonavir) and NS5A (ombitasvir) is in development for the treatment of HCV genotype 1 infections.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Sulfonamides/pharmacology , Uracil/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , 2-Naphthylamine , Drug Resistance, Viral , Genotype , Hepacivirus/classification , Hepacivirus/genetics , Humans , Replicon/drug effects , Uracil/pharmacology
5.
Bioorg Med Chem Lett ; 23(12): 3627-30, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23642966

ABSTRACT

Efforts to improve the genotype 1a potency and pharmacokinetics of earlier naphthyridine-based HCV NS5A inhibitors resulted in the discovery of a novel series of pyrido[2,3-d]pyrimidine compounds, which displayed potent inhibition of HCV genotypes 1a and 1b in the replicon assay. SAR in this system revealed that the introduction of amides bearing an additional 'E' ring provided compounds with improved potency and pharmacokinetics. Introduction of a chiral center on the amide portion resulted in the observation of a stereochemical dependence for replicon potency and provided a site for the attachment of functional groups useful for improving the solubility of the series. Compound 21 was selected for administration in an HCV-infected chimpanzee. Observation of a robust viral load decline provided positive proof of concept for inhibition of HCV replication in vivo for the compound series.


Subject(s)
Pyrimidines/chemistry , Pyrimidines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Drug Discovery , Humans , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
6.
Bioorg Med Chem Lett ; 23(12): 3487-90, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23664214
7.
Bioorg Med Chem Lett ; 22(11): 3747-50, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22542020

ABSTRACT

Aryl dihydrouracil derivatives were identified from high throughput screening as potent inhibitors of HCV NS5B polymerase. The aryl dihydrouracil derivatives were shown to be non-competitive with respect to template RNA and elongation nucleotide substrates. They demonstrated genotype 1 specific activity towards HCV NS5B polymerases. Structure activity relationships and genotype specific activities of aryl dihydrouracil derivatives suggested that they bind to the palm initiation nucleotide pocket, a hypothesis which was confirmed by studies with polymerases containing mutations in various inhibitor binding sites. Therefore, aryl dihydrouracil derivatives represent a novel class of palm initiation site inhibitors of HCV NS5B polymerase.


Subject(s)
Protease Inhibitors/chemistry , Uracil/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Substitution , Genotype , Hepacivirus/drug effects , Hepacivirus/enzymology , Kinetics , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Structure-Activity Relationship , Transcription Initiation Site , Uracil/chemical synthesis , Uracil/chemistry , Uracil/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
9.
J Med Chem ; 54(20): 7094-104, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21899332

ABSTRACT

Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.


Subject(s)
Drug Resistance, Viral , HIV Protease Inhibitors/chemical synthesis , HIV-1/drug effects , Animals , Biological Availability , Crystallography, X-Ray , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , HIV-1/isolation & purification , Hydrogen Bonding , In Vitro Techniques , Microsomes, Liver/metabolism , Models, Molecular , Mutation , Rats , Stereoisomerism , Structure-Activity Relationship
10.
AIDS Res Hum Retroviruses ; 27(11): 1223-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21417947

ABSTRACT

HIV drug resistance is a multifactorial phenomenon and constitutes a major concern as it results in therapy failure. The aim of this study was to assess the impact of an amino acid insertion identified at position 33 of the protease gene, derived from samples from three patients under lopinavir therapy, on viral fitness and protease inhibitor (PI) resistance. Successive samples were available from one of the patients for genotypic and phenotypic testing in order to investigate the role of this insertion. The patient had been pretreated with various antiretroviral drugs and showed poor virological response from the point of the acquisition of the mutation onward. The insertion was acquired in the context of a number of other PI mutations and was stable following acquisition. Phenotypic testing revealed reduced susceptibility to various PIs and a reduction of the replicative capacity (RC) of the virus. In the presence of the insertion alone, a decrease of the RC was observed, which seemed to be compensated by the presence of other mutations. The L33ins might have a potential role in PI resistance pathways but further investigation in a larger number of clinical samples is required in order to elucidate this resistance mechanism.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Protease Inhibitors/pharmacology , HIV Protease/genetics , HIV-1/drug effects , Lopinavir/pharmacology , Mutagenesis, Insertional , Amino Acid Sequence , Base Sequence , Drug Resistance, Viral/genetics , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/virology , HIV Protease/drug effects , HIV-1/enzymology , HIV-1/genetics , HIV-1/physiology , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Sequence Analysis, DNA , Virus Replication/drug effects
11.
Bioorg Med Chem Lett ; 21(6): 1876-9, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316235

ABSTRACT

A series of quinoline derivatives was synthesized as potential bioisosteric replacements for the benzothiadiazine moiety of earlier Hepatitis C NS5B polymerase inhibitors. Several of these compounds exhibited potent activity in enzymatic and replicon assays.


Subject(s)
Benzothiadiazines/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Benzothiadiazines/chemistry , Hepacivirus/enzymology , Hepacivirus/physiology , Protease Inhibitors/chemistry , Virus Replication
12.
J Med Chem ; 52(23): 7604-17, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19954246

ABSTRACT

A series of HIV protease inhibitor based on the allophenylnorstatine structure with various P(2)' moieties were synthesized. Among these analogues, we discovered that a small allyl group would maintain potent enzyme inhibitory activity compared to the o-methylbenzyl moiety in clinical candidate 1 (KNI-764, also known as JE-2147, AG-1776, or SM-319777). Introduction of an anilinic amino group to 2 (KNI-727) improved water-solubility and anti-HIV-1 activity. X-ray crystallographic analysis of 13k (KNI-1689) with a beta-methallyl group at P(2)' position revealed hydrophobic interactions with Ala28, Ile84, and Ile50' similar to that of 1. The presence of an additional methyl group on the allyl group in compound 13k significantly increased anti-HIV activity over 1 while providing a rational drug design for structural minimization and improving membrane permeability.


Subject(s)
HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/chemistry , HIV-1/enzymology , Phenylbutyrates/chemistry , Phenylbutyrates/pharmacology , Cell Line , HIV Protease/metabolism , HIV Protease Inhibitors/chemical synthesis , HIV-1/drug effects , Humans , Models, Molecular , Molecular Conformation , Phenylbutyrates/chemical synthesis , Structure-Activity Relationship , Substrate Specificity
13.
J Med Chem ; 52(10): 3174-83, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19402666

ABSTRACT

Benzothiadiazine inhibitors of the HCV NS5B RNA-dependent RNA polymerase are an important class of non-nucleoside inhibitors that have received considerable attention in the search for novel HCV therapeutics. Research in our laboratories has identified a novel series of tetracyclic benzothiadiazine inhibitors of HCV polymerase bearing a benzylamino substituent on the B-ring. Compounds in this series exhibit low-nanomolar activities in both genotypes 1a and 1b polymerase inhibition assays and subgenomic replicon assays. Optimization of pharmacokinetic properties in rat led to compound 30, which has good oral bioavailability (F = 56%) and a favorable tissue distribution drug profile, with high liver to plasma ratios. Compound 30 is a potent inhibitor in replicon assays, with EC(50) values of 10 and 6 nM against genotypes 1a and 1b, respectively.


Subject(s)
Benzothiadiazines/chemical synthesis , Benzothiadiazines/pharmacology , Hepacivirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Benzothiadiazines/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Genotype , Hepacivirus/genetics , Liver/metabolism , Microbial Sensitivity Tests , Rats , Structure-Activity Relationship , Tissue Distribution
14.
J Med Chem ; 52(9): 2964-70, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19348416

ABSTRACT

We studied the synthesis, cleavage rates, and oral administration of prodrugs of the HIV protease inhibitors (PIs) lopinavir and ritonavir. Phosphate esters attached directly to the central hydroxyl groups of these PIs did not demonstrate enzyme-mediated cleavage in vitro and did not provide measurable plasma levels of the parent drugs in vivo. However, oxymethylphosphate (OMP) and oxyethylphosphate (OEP) prodrugs provided improved rates of cleavage, high levels of aqueous solubility, and high plasma levels of the parent drugs when dosed orally in rats and dogs. Dosing unformulated capsules containing the solid prodrugs led to plasma levels equivalent to those observed for dosing formulated solutions of the parent drugs. A direct synthetic process for the preparation of OMP and OEP prodrugs was developed, and the improved synthetic method may be applicable to the preparation of analogous soluble prodrugs of other drug classes with limited solubility.


Subject(s)
Prodrugs/chemistry , Prodrugs/pharmacokinetics , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics , Ritonavir/chemistry , Ritonavir/pharmacokinetics , Water/chemistry , Administration, Oral , Animals , Dogs , Female , HIV Protease/metabolism , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Hydrogen-Ion Concentration , Lopinavir , Male , Prodrugs/administration & dosage , Pyrimidinones/administration & dosage , Rats , Rats, Sprague-Dawley , Ritonavir/administration & dosage , Solubility
15.
J Med Chem ; 52(8): 2571-86, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19323562

ABSTRACT

A series of symmetry-based HIV protease inhibitors was designed and synthesized. Modification of the core regiochemistry and stereochemistry significantly affected the potency, metabolic stability, and oral bioavailability of the inhibitors, as did the variation of a pendent arylmethyl P3 group. Optimization led to the selection of two compounds, 10c (A-790742) and 9d (A-792611), for advancement to preclinical studies. Both compounds displayed low nanomolar potency against wild type HIV in the presence of human serum, low rates of metabolism in human liver microsomes, and high oral bioavailability in animal models. The compounds were examined in a preclinical model for the hyperbilirubinemia observed with some HIV PIs, and both exhibited less bilirubin elevation than comparator compounds. X-ray crystallographic analyses of the new cores were used to examine differences in their binding modes. The antiviral activity of the compounds against protease inhibitor resistant strains of HIV was also determined.


Subject(s)
Carbamates/chemical synthesis , Dipeptides/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , Putrescine/analogs & derivatives , Pyridines/chemical synthesis , Animals , Binding Sites , Biological Availability , Caco-2 Cells , Carbamates/metabolism , Carbamates/pharmacology , Cell Membrane Permeability , Crystallography, X-Ray , Dipeptides/adverse effects , Dipeptides/pharmacology , Dogs , Drug Resistance, Viral , HIV Protease/genetics , HIV Protease Inhibitors/adverse effects , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , HIV-1/genetics , Humans , Hyperbilirubinemia/chemically induced , Hyperlipidemias/chemically induced , Hyperlipidemias/metabolism , In Vitro Techniques , Microsomes, Liver/metabolism , Models, Molecular , Mutation , Putrescine/chemical synthesis , Putrescine/metabolism , Putrescine/pharmacology , Pyridines/adverse effects , Pyridines/pharmacology , Rats , Rats, Gunn , Stereoisomerism , Structure-Activity Relationship
16.
J Med Chem ; 52(6): 1659-69, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19226162

ABSTRACT

The hepatitis C virus (HCV) NS5B polymerase is essential for viral replication and has been a prime target for drug discovery research. Our efforts directed toward the discovery of HCV polymerase inhibitors resulted in the identification of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines 2 and 3. The most active compound displayed activity in genotypes 1a and 1b polymerase and replicon cell culture inhibition assays at subnanomolar and low nanomolar concentrations, respectively. It also displayed an excellent pharmacokinetic profile in rats, with a plasma elimination half-life after intravenous dosing of 4.5 h, oral bioavailability of 77%, and a peak liver concentration of 21.8 microg/mL.


Subject(s)
Benzothiadiazines/chemical synthesis , Benzothiadiazines/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Animals , Benzothiadiazines/pharmacokinetics , Biological Availability , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Magnetic Resonance Spectroscopy , Rats , Spectrometry, Mass, Electrospray Ionization
17.
Antiviral Res ; 82(1): 82-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19174175

ABSTRACT

The Hepatitis C (HCV) replicon system is a useful tool for the high-volume screening of inhibitors of HCV replication. In this report, a cell-based assay has been described, which monitors the inhibition of HCV genotypes 1a and 1b as well as cytotoxicity, from a single well of a 96-well plate. A mixture of two stable replicon cell lines was used: one containing a 1a-H77 replicon expressing a firefly luciferase reporter, and the other one containing a 1b-N replicon with a secreted alkaline phosphatase reporter, thus allowing us to monitor replication of two HCV genotypes in the same well. Cytotoxicity was measured using the Resazurin cytotoxicity assay. The assay was validated with known HCV inhibitors and showed that the antiviral activity and cytotoxicity of compounds were reproducibly measured under screening conditions. It was also showed that the assay's signal-to-noise ratio and Z' coefficient were suitable for high-throughput screening. A panel of HCV inhibitors showed a good correlation between EC(50) and TD(50) values for 1a and 1b replicon activity and cytotoxicity measured using either a single replicon format or mixed replicon format. Thus, the use of this mixed replicon format provides an economical method for simultaneous measurement of compound activity against two HCV genotypes as well as cytotoxicity, thereby reducing cost of reagents and labor as well as improving throughput.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/virology , Microbial Sensitivity Tests/methods , Antiviral Agents/chemistry , Drug Evaluation, Preclinical , Genes, Reporter , Genotype , Hepacivirus/genetics , Humans , Replicon/drug effects , Structure-Activity Relationship , Virus Replication/drug effects
18.
Bioorg Med Chem Lett ; 18(14): 3887-90, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18599294

ABSTRACT

4,4-Dialkyl-1-hydroxy-3-oxo-3.4-dihydronaphthalene-3-yl benzothiadiazine derivatives were synthesized and evaluated as inhibitors of genotypes 1a and 1b HCV NS5B polymerase. A number of these compounds exhibited potent activity against genotypes 1a and 1b HCV polymerase in both enzymatic and cell culture activities. A representative compound also showed favorable pharmacokinetics in the rat.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Area Under Curve , Chemistry, Pharmaceutical/methods , Drug Design , Genotype , Infusions, Intravenous , Inhibitory Concentration 50 , Models, Chemical , Rats , Viral Nonstructural Proteins/genetics
19.
Bioorg Med Chem Lett ; 18(11): 3173-7, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18479921

ABSTRACT

Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Salicylamides/chemical synthesis , Salicylamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Combinatorial Chemistry Techniques , Drug Design , Humans , Molecular Structure , Salicylamides/chemistry , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 18(5): 1692-5, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18242993

ABSTRACT

The synthesis of several pyrrolidine inhibitor analogs is described that possess nanomolar in vitro potencies against the neuraminidase enzymes expressed by the B/Memphis/3/89 and A/N1/PR/8/34 influenza strains.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Neuraminidase/antagonists & inhibitors , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Influenza A virus/drug effects , Influenza B virus/drug effects , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...