Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 114: 110142, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33290947

ABSTRACT

Prostate cancer exhibits a propensity to metastasize to the bone, which often leads to fatality. Bone metastasis is characterized by complex biochemical, morphological, pathophysiological, and genetic changes to cancer cells as they colonize at bone sites. In this study, we report the evaluation of MDA PCa2b prostate cancer cells' nanomechanical properties during the mesenchymal-to-epithelial transition (MET) and during disease progression at the metastatic site. Bone-mimetic tissue-engineered 3D nanoclay scaffolds have been used to create in vitro metastatic site for prostate cancer. A significant softening of the prostate cancer cells during MET and further softening as disease progression occurs at metastasis is also reported. The significant reduction in elastic modulus of prostate cancer cells during MET was attributed to actin reorganization and depolymerization. This study provides input towards direct nanomechanical measurements to evaluate the time evolution of cells' mechanical behavior in tumors at bone metastasis site.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Bone and Bones , Cell Differentiation , Cell Line, Tumor , Humans , Male , Neoplasm Metastasis , Tissue Scaffolds
2.
JBMR Plus ; 4(2): e10256, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32083238

ABSTRACT

In this study, two types of prostate cancer cell lines, highly metastatic PC-3 and low metastatic MDA PCa 2b (PCa) were cultured on bone mimetic scaffolds to recapitulate metastasis to bone. A unique in vitro 3D tumor model that uses a sequential culture (SC) of human mesenchymal stem cells followed by seeding with cancer cells after bone formation was initiated to study the phenotype-specific interaction between prostate cancer cells and bone microenvironment. The PCa cells were observed to be less prolific and less metastatic, and to form multicellular tumoroids in the bone microenvironment, whereas PC-3 cells were more prolific and were highly metastatic, and did not form multicellular tumoroids in the bone microenvironment. The metastatic process exhibited by these two prostate cancer cell lines showed a significant and different effect on bone mineralization and extracellular matrix formation. Excessive bone formation in the presence of PC-3 and significant osteolysis in the presence of PCa were observed, which was also indicated by osteocalcin and MMP-9 expression as measured by ELISA and qRT-PCR. The field emission scanning electron microscopy images revealed that the structure of mineralized collagen in the presence of PC-3 is different than the one observed in healthy bone. All experimental results indicated that both osteolytic and osteoblastic bone lesions can be recapitulated in our tumor testbed model and that different cancer phenotypes have a very different influence on bone at metastasis. The 3D in vitro model presented in this study provides an improved, reproducible, and controllable system that is a useful tool to elucidate osteotropism of prostate cancer cells. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

3.
J Tissue Eng Regen Med ; 13(2): 119-130, 2019 02.
Article in English | MEDLINE | ID: mdl-30466156

ABSTRACT

Breast cancer (BrCa) preferentially spreads to bone and colonises within the bone marrow to cause bone metastases. To improve the outcome of patients with BrCa bone metastasis, we need to understand better the mechanisms underlying bone metastasis. Researchers have relied heavily upon in vivo xenografts due to limited availability of human bone metastasis samples. A significant limitation of these is that they do not have a human bone microenvironment. To address this issue, we have developed a nanoclay-based 3D in vitro model of BrCa bone metastasis using human mesenchymal stem cells (MSCs) and human BrCa cells mimicking late stage of BrCa pathogenesis at the metastatic site. This 3D model can provide a microenvironment suitable for cell-cell and cell-matrix interactions whilst retaining the behaviour of BrCa cells with different metastasis potential (i.e., highly metastatic MDA-MB-231 and low metastatic MCF-7) as shown by the production of alkaline phosphatase and matrix metalloproteinase-9. The sequential culture of MSCs with MCF-7 exhibited 3D tumouroids formation and also occurrence of mesenchymal to epithelial transition of cancer metastasis as evidenced by gene expression and immunocytochemistry. The unique and distinct behaviour of highly metastatic MDA-MB-231 and the low metastatic MCF-7 was observed at the bone metastasis site. The changes to migratory capabilities and invasiveness in MDA-MB-231 in comparison with tumour growth with MCF-7 was observed. Together, a novel bone-mimetic 3D in vitro BrCa model has been developed that could be used to study mechanisms governing the later stage of cancer pathogenesis in bone.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Cell Culture Techniques , Clay/chemistry , Models, Biological , Nanostructures/chemistry , Tissue Engineering , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Neoplasm Metastasis
4.
J Tissue Eng Regen Med ; 12(3): 727-737, 2018 03.
Article in English | MEDLINE | ID: mdl-28603879

ABSTRACT

Nanocomposite scaffolds show extensive applications in regenerative medicine and have shown promise as in vitro analogues of human tissue that can be used for the study of diseases. The complex nature of cancer metastasis is recently investigated using several 3D scaffold models. Herein, we report a polymer-nanoclay-based in vitro tumour model that recapitulates early stage of prostate cancer (PCa) colonization during skeletal metastasis on bone mimetic scaffolds. A unique cell culture system termed as "sequential culture (SC)" has been applied to create a bone-mimetic niche for colonization of PCa cells. Human mesenchymal stem cells (MSCs) were seeded on the bone-mimetic scaffolds, where they differentiated into bone cells and then formed mineralized bone matrix without osteogenic supplements. Further, PCa was seeded on MSCs-seeded scaffolds. Sequentially cultured PCa cells with MSCs formed self-organized multicellular tumoroids with distinct tight cellular junctions and hypoxic core regions. Extensive quantitative reverse transcription-polymerase chain reaction experiments were performed to evaluate the expressions of genes related to osteotropic bone metastasis of PCa. On the nanoclay scaffolds, the MSCs differentiated to mature osteoblasts and epithelial to mesenchymal transition was inhibited whereas mesenchymal to epithelial transition was enhanced, as also the hypoxia increased angiogenesis, and finally, PCa cells initiated osteoblastic lesion. Further, the SC technique has significant effects on expression of key metastasis-related genes. Therefore, the SC-based tumour model can be applied to recapitulate more consistent osteotropic cancer cell behavior in understanding tumour biology. This model also can be implemented for drug screening to target colonization stage of PCa cells in the bone microenvironment.


Subject(s)
Biomimetic Materials/chemistry , Clay/chemistry , Epithelial-Mesenchymal Transition , Nanoparticles/chemistry , Prostatic Neoplasms/pathology , Tissue Scaffolds/chemistry , Cell Differentiation , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Shape , Core Binding Factor Alpha 1 Subunit/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation , Humans , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/ultrastructure , Nanoparticles/ultrastructure , Neoplasm Metastasis , Neovascularization, Pathologic/genetics , Osteoblasts/metabolism , Osteogenesis , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/ultrastructure , Spheroids, Cellular/pathology , Spheroids, Cellular/ultrastructure
5.
Mol Pharm ; 14(6): 1916-1928, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28493710

ABSTRACT

Improving the therapeutic index of anticancer agents is an enormous challenge. Targeting decreases the side effects of the therapeutic agents by delivering the drugs to the intended destination. Nanocarriers containing the nuclear localizing peptide sequences (NLS) translocate to the cell nuclei. However, the nuclear localization peptides are nonselective and cannot distinguish the malignant cells from the healthy counterparts. In this study, we designed a "masked" NLS peptide which is activated only in the presence of overexpressed matrix metalloproteinase-7 (MMP-7) enzyme in the pancreatic cancer microenvironment. This peptide is conjugated to the surface of redox responsive polymersomes to deliver doxorubicin and curcumin to the pancreatic cancer cell nucleus. We have tested the formulation in both two- and three-dimensional cultures of pancreatic cancer and normal cells. Our studies revealed that the drug-encapsulated polymeric vesicles are significantly more toxic toward the cancer cells (shrinking the spheroids up to 49%) compared to the normal cells (shrinking the spheroids up to 24%). This study can lead to the development of other organelle targeted drug delivery systems for various human malignancies.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Curcumin/administration & dosage , Curcumin/pharmacology , Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Pancreatic Neoplasms/metabolism , Peptides/chemistry , Polymers/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacology , Humans , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 7/metabolism , Microscopy, Atomic Force , Oxidation-Reduction/drug effects
6.
J Biomed Mater Res A ; 104(7): 1591-602, 2016 07.
Article in English | MEDLINE | ID: mdl-26873510

ABSTRACT

In recent times, the limitation of two-dimensional cultures and complexity of in vivo models has paved the way for the development of three-dimensional models for studying cancer. Here we report the development of a new tumor model using PCL/HAPClay scaffolds seeded with a sequential culture of human mesenchymal stem cells (hMSCs) followed by human prostate cancer cells (HPCCs). This nanocomposite system is used as a test-bed for studying cancer metastasis and efficacy of anti-cancer drugs using a polymersome delivery method. A novel sequential cell culture system in three-dimensional in vitro bone model provides a unique bone mimetic environment. The hMSCs seeded scaffolds are seeded with prostate cancer cells after the hMSCs have differentiated into osteoblasts. Sequential culture on the scaffolds has shown formation of tumoroids or microtissue consisting of organized, densely packed round cells with hypoxic core regions similar to in vivo tumors. Such tumoroids are not observed on HPCC seeded scaffolds or when HPCCs sequentially cultured with human osteoblast cells. Clearly, the newly differentiated hMSCs play a vital role in the ability of cancer cells to grow into tumoroids and cause disease. The PCL/HAPclay scaffold system seeded with the sequential culture of hMSCs, and HPCCs presents a good model system for study of the interactions between prostate cancer cells and bone microenvironment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1591-1602, 2016.


Subject(s)
Aluminum Silicates/chemistry , Biomimetic Materials/pharmacology , Cell Culture Techniques/methods , Nanoparticles/chemistry , Spheroids, Cellular/pathology , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Clay , Drug Delivery Systems , Folic Acid/pharmacology , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/ultrastructure , Osteogenesis/drug effects , Prostatic Neoplasms/pathology , Spheroids, Cellular/drug effects , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...