Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0287944, 2023.
Article in English | MEDLINE | ID: mdl-37939069

ABSTRACT

Tilapia Lake Virus (TiLV) is a disease that affects tilapia fish, causing a high rate of sudden death at any stage in their life cycle. Unfortunately, there are currently no effective antiviral drugs or vaccines to prevent or control the progression of this disease. Researchers have discovered that the CRM1 protein plays a critical function in the development and spreading of animal viruses. By inhibiting CRM1, the virus's spread in commercial fish farms can be suppressed. With this in mind, this study intended to identify potential antiviral drugs from two different tropical mangrove plants from tropical regions: Heritiera fomes and Ceriops candolleana. To identify promising compounds that target the CRM1 protein, a computer-aided drug discovery approach is employed containing molecular docking, ADME (absorption, distribution, metabolism and excretion) analysis, toxicity assessment as well as molecular dynamics (MD) simulation. To estimate binding affinities of all phytochemicals, molecular docking is used and the top three candidate compounds with the highest docking scores were selected, which are CID107876 (-8.3 Kcal/mol), CID12795736 (-8.2 Kcal/mol), and CID12303662 (-7.9 Kcal/mol). We also evaluated the ADME and toxicity properties of these compounds. Finally, MD simulation was conducted to analyze the stability of the protein-ligand complex structures and confirm the suitability of these compounds. The computational study demonstrated that the phytochemicals found in H. fomes and C. candolleana could potentially serve as important inhibitors of TiLV, offering practical utility. However, further in vivo investigations are necessary to investigate and potentially confirm the effectiveness of these compounds as antiviral drugs against the virus TiLV.


Subject(s)
Anti-HIV Agents , Fish Diseases , Tilapia , Viruses , Animals , Antiviral Agents/pharmacology , Molecular Docking Simulation , Fish Diseases/drug therapy , Drug Design , Molecular Dynamics Simulation
2.
Health Inf Sci Syst ; 11(1): 57, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38028961

ABSTRACT

The most prevalent malignant illness of the gastrointestinal system, colorectal cancer, is the third most prevalent cancer in males and the second most prevalent cancer in women. Importin-11 is a protein that acts as a regulator of cancer cell proliferation in colorectal tumours by conveying ß-catenin to the cell nucleus. However, the IPO11 gene was found to encode a protein called Importin-11, which functions as a nucleus importer for the cell. As a result, preventing ß-catenin from entering the nucleus requires blocking Importin-11. As a result, we conducted a multi-omics investigation to assess IPO11 gene potential as a therapeutic biomarker for human colorectal cancer (CC). Oncomine, GEPIA2, immunohisto-chemistry, and UALCAN databases were used to analyses the mRNA expression profiles of IPO11 in CC. The investigation has yielded clear evidence of the increase of IPO11 expression in CC subtypes, as indicated by the data acquired. Analysing CC research from the cBioPortal database, the study discovered three new missense mutations in the importin-11 protein sequence at a frequency of 0.00-1.50% copy number changes. Additionally, the Kaplan-Meier plots demonstrated a strong connection concerning IPO11 downregulation and a poorer CC patient survival rate. The co-expressed gene profile of IPO11 was likewise associated with the onset of CC. IPO11 co-expressed gene profile was also linked to CC development. Moreover, the correlation analysis using bc-GenExMiner and the UCSC Xena server identified KIF2A as the most positively co-expressed gene. The study found that KIF2A and its co-expressed genes were involved in a wide variety of cancer progression pathways using the Enrichr database. Cumulatively, this result will not only provide new information about the expression of IPO11 associated with CC progression and patient survival, but could also serve as a therapeutic biomarker for treating CC in a significant and worthwhile manner. Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-023-00259-2.

3.
Saudi J Biol Sci ; 30(9): 103748, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37560480

ABSTRACT

Sea urchin-derived compounds are potential candidates for the development of effective drugs for the treatment of cancer diseases. In this study, 19 compounds derived from sea urchin (Diadema savignyi) were used to treat colorectal cancer using the HCT116 cell line. However, molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, molecular dynamic (MD) simulation, and molecular mechanics generalized Born surface area (MM-GBSA) were used to confirm the ligand-protein interaction. Interactions of Importin-11 receptor with sea urchin compounds reveal that four compounds have higher binding affinities (ranging from -8.6 to -7.1 kcal/mol). In vitro testing revealed that the CID 6432458 compound was effective (docking score of -8.6 kcal/mol) against the HCT116 cell line. The cytotoxicity of HCT116 has been documented, with an IC50 value of 6.885 ± 4. MTT assay, apoptosis analysis, and cell cycle assay were utilized to examine cell death in colorectal cancer. In the MTT experiment, 15 µM and 20 µM dosages were associated with 77% cell death; however, flow cytometry analysis using the IC50 value revealed that the selected chemical induced greater apoptosis in the HCT116 cell line (58.5%). The gene expression data revealed that the apoptotic gene BAX is expressed at a higher level than the BCL-2 gene. The IPO11 gene was downregulated during treatment. In the experiment involving the cell cycle, the S phase for the 30  µM dose showed 75.1% apoptosis, which was greater than the other concentrations used alone. These in silico and in vitro analysis will not only provide new information about Importin-11 receptor and insight into colorectal cancer but will also facilitate the development of natural compounds in a significant and worthwhile manner.

4.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36678617

ABSTRACT

Pancreatic cancer is a very deadly disease with a 5-year survival rate, making it one of the leading causes of cancer-related deaths globally. Focal adhesion kinase 1 (FAK1) is a ubiquitously expressed protein in pancreatic cancer. FAK, a tyrosine kinase that is overexpressed in cancer cells, is crucial for the development of tumors into malignant phenotypes. FAK functions in response to extracellular signals by triggering transmembrane receptor signaling, which enhances focal adhesion turnover, cell adhesion, cell migration, and gene expression. The ligand-based drug design approach was used to identify potential compounds against the target protein, which included molecular docking: ADME (absorption, distribution, metabolism, and excretion), toxicity, molecular dynamics (MD) simulation, and molecular mechanics generalized born surface area (MM-GBSA). Following the retrieval of twenty hits, four compounds were selected for further evaluation based on a molecular docking approach. Three newly discovered compounds, including PubChem CID24601203, CID1893370, and CID16355541, with binding scores of -10.4, -10.1, and -9.7 kcal/mol, respectively, may serve as lead compounds for the treatment of pancreatic cancer associated with FAK1. The ADME (absorption, distribution, metabolism, and excretion) and toxicity analyses demonstrated that the compounds were effective and nontoxic. However, further wet laboratory investigations are required to evaluate the activity of the drugs against the cancer.

5.
Curr Issues Mol Biol ; 44(10): 4838-4858, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36286044

ABSTRACT

The mortality of cancer patients with neuroblastoma is increasing due to the limited availability of specific treatment options. Few drug candidates for combating neuroblastoma have been developed, and identifying novel therapeutic candidates against the disease is an urgent issue. It has been found that muc-N protein is amplified in one-third of human neuroblastomas and expressed as an attractive drug target against the disease. The myc-N protein interferes with the bromodomain and extraterminal (BET) family proteins. Pharmacologically inhibition of the protein potently depletes MYCN in neuroblastoma cells. BET inhibitors target MYCN transcription and show therapeutic efficacy against neuroblastoma. Therefore, the study aimed to identify potential inhibitors against the BET family protein, specifically Brd4 (brodamine-containing protein 4), to hinder the activity of neuroblastoma cells. To identify effective molecular candidates against the disease, a structure-based pharmacophore model was created for the binding site of the Brd4 protein. The pharmacophore model generated from the protein Brd4 was validated to screen potential natural active compounds. The compounds identified through the pharmacophore-model-based virtual-screening process were further screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, and molecular dynamics (MD) simulation approach. The pharmacophore-model-based screening process initially identified 136 compounds, further evaluated based on molecular docking, ADME analysis, and toxicity approaches, identifying four compounds with good binding affinity and lower side effects. The stability of the selected compounds was also confirmed by dynamic simulation and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) methods. Finally, the study identified four natural lead compounds, ZINC2509501, ZINC2566088, ZINC1615112, and ZINC4104882, that will potentially inhibit the activity of the desired protein and help to fight against neuroblastoma and related diseases. However, further evaluations through in vitro and in vivo assays are suggested to identify their efficacy against the desired protein and disease.

6.
Saudi J Biol Sci ; 29(9): 103395, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35935102

ABSTRACT

Sea Urchin is not only the crucial keystone species for the coral reef restoration but also it has antimicrobial and anti-cancer activities. This study undertaken to focus on length weight relationship, size fecundity distribution and the estimation of fecundity from the long-spined Sea Urchin, Diadema savignyi at the coastal water of the middle Red Sea, Saudi Arabia. A total of 633 specimen of D. savignyi has been collected from the coastal water of Obhur Creak during the sampling time. In each species, total length (TL) measured as a TW = 11.908 × 0.9995 (R2 = 0.8975) through the linear regression graph and digital slide callipers and, individual body weight estimated by the digital balance. The natural and fishing mortality 2.02/yr and 0.19/yr respectively has documented from study area. The Asymptotic length value (L∞) (cm) were estimated 7.35 where the growth coefficient (K) was 0.67 from the monthly length-frequency numeric data by using FAO FISAT II software for generating and estimating the population parameters and age. However, the recruitment pattern was observed to be increased gradually with the maximum recruitment peak between the months of September and October 2021. Therefore, the estimation of fecundity varied from 49,226 ova (total length 3.1 cm) to 466,133 ova (total length 6.8). As a result, analysis of the relationship between the absolute fecundity (F) and total length (TL), and between the fecundity and drained body weight (DW), revealed a linear regression model with a positive and significant relationship at p < 0.05. This is the first approach to study the detailed population dynamic of the ecologically and economically important tropical long spine sea urchin (D. savignyi) endemic to the region. However, the result so far obtained from this research would greatly be useful towards the understanding of the detailed population structure and growth patterns that will undoubtedly help us to develop captive breeding, seed production, culture protocols, conservation strategies and isolation bioactive compounds of this high-valued species incommensurate with national and international perspectives.

7.
Molecules ; 27(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807415

ABSTRACT

The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.


Subject(s)
Drug Design , Quantitative Structure-Activity Relationship , Computer-Aided Design , Drug Discovery/methods , Molecular Docking Simulation , Molecular Dynamics Simulation
8.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408488

ABSTRACT

Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein. Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism, and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that have better binding affinity to the target protein. The ADME and toxicity properties indicated good pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the compounds identified better binding stability of the compounds to the desired protein. To sum up, the phytoconstituents from two plants showed better anticancer activity against TS protein that can be further developed as an anti-CRC drug.


Subject(s)
Antineoplastic Agents , Avicennia , Catharanthus , Colorectal Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Avicennia/metabolism , Catharanthus/metabolism , Colorectal Neoplasms/drug therapy , Humans , Molecular Docking Simulation , Thymidylate Synthase/metabolism
9.
Mar Drugs ; 19(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925208

ABSTRACT

Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish's skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score -8.5 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein.


Subject(s)
Antiviral Agents/pharmacology , Avicennia/chemistry , Epsilonretrovirus/drug effects , Fish Diseases/prevention & control , Plant Extracts/pharmacology , Retroviridae Infections/veterinary , Tumor Virus Infections/veterinary , Animals , Antiviral Agents/isolation & purification , Epsilonretrovirus/metabolism , Epsilonretrovirus/pathogenicity , Fish Diseases/virology , Gene Products, gag/antagonists & inhibitors , Gene Products, gag/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/isolation & purification , Protein Conformation , Retroviridae Infections/prevention & control , Retroviridae Infections/virology , Structure-Activity Relationship , Tumor Virus Infections/prevention & control , Tumor Virus Infections/virology , Virus Release/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...