Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 53(1): 380-449, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38095227

ABSTRACT

Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.


Subject(s)
Immunoconjugates , Proteins , Proteins/chemistry , Immunoconjugates/chemistry , Technology
2.
Org Lett ; 25(34): 6385-6390, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37603545

ABSTRACT

A protein's pool of functionalities presents a formidable challenge for its single-site modification. Here, we report a method to harness protein-protein interaction (PPI) to drive selective modification. It involves the chemoselective reversible generation of reactive intermediates and utilizes PPI-specificity to drive the subsequent site-selective irreversible step. The disintegrate (DIN) theory-driven multicomponent aza-Morita-Baylis-Hillman (aza-MBH) reaction offers homogeneous and modular single-site protein modification capable of late-stage mono- and dual-probe installation.


Subject(s)
Protein Processing, Post-Translational
3.
ACS Cent Sci ; 9(2): 137-150, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36844488

ABSTRACT

The chemical toolbox for the selective modification of proteins has witnessed immense interest in the past few years. The rapid growth of biologics and the need for precision therapeutics have fuelled this growth further. However, the broad spectrum of selectivity parameters creates a roadblock to the field's growth. Additionally, bond formation and dissociation are significantly redefined during the translation from small molecules to proteins. Understanding these principles and developing theories to deconvolute the multidimensional attributes could accelerate the area. This outlook presents a disintegrate (DIN) theory for systematically disintegrating the selectivity challenges through reversible chemical reactions. An irreversible step concludes the reaction sequence to render an integrated solution for precise protein bioconjugation. In this perspective, we highlight the key advancements, unsolved challenges, and potential opportunities.

4.
Nat Commun ; 13(1): 6038, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229616

ABSTRACT

The maintenance of machinery requires its operational understanding and a toolbox for repair. The methods for the precision engineering of native proteins meet a similar requirement in biosystems. Its success hinges on the principles regulating chemical reactions with a protein. Here, we report a technology that delivers high-level control over reactivity, chemoselectivity, site-selectivity, modularity, dual-probe installation, and protein-selectivity. It utilizes cysteine-based chemoselective Linchpin-Directed site-selective Modification of lysine residue in a protein (LDMC-K). The efficiency of the end-user-friendly protocol is evident in quantitative conversions within an hour. A chemically orthogonal C-S bond-formation and bond-dissociation are essential among multiple regulatory attributes. The method offers protein selectivity by targeting a single lysine residue of a single protein in a complex biomolecular mixture. The protocol renders analytically pure single-site probe-engineered protein bioconjugate. Also, it provides access to homogeneous antibody conjugates (AFC and ADC). The LDMC-K-ADC exhibits highly selective anti-proliferative activity towards breast cancer cells.


Subject(s)
Cysteine , Immunoconjugates , Cysteine/chemistry , Immunoconjugates/chemistry , Lysine/chemistry , Protein Engineering , Proteins/chemistry
5.
Org Biomol Chem ; 18(25): 4669-4691, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32538424

ABSTRACT

The library of chemical reactions for C-C and C-heteroatom bond formation is exceptional. The understanding of reactivity and diverse aspects of selectivity facilitates the functional group transformation of high complexity. However, the same is not valid for proteins as an organic substrate. Gratifyingly, we can translate some of the pre-existing reactions for developing methods for the modification of proteins. Also, there is enormous potential to create a new knowledge domain that will be unique to the densely functionalized architecture of proteins. At the outset, we outlined a few concepts that bridge the gap between chemical reactions with small molecules and proteins. Next, we introduced the key attributes and challenges associated with the selectivity that emerges due to the presence of multiple types and copies of functional groups. The examples with nucleophilic amino acids outline the chemoselectivity-associated features. Gradually, the discussion moves toward the concepts that led to the successful realization of site-selectivity and N-terminus residue-specificity. The attributes of organic chemistry that emerge due to the multifunctional organization of the substrate are marked. The last section overviews the analysis of protein bioconjugates by mass spectrometry. Also, the review outlines the unmet needs and opportunities.


Subject(s)
Proteins/chemistry , Amines/chemistry , Amino Acids/chemistry , Carboxylic Acids/chemistry , Disulfides/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...