Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Chin Clin Oncol ; 13(3): 32, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38984486

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally. To reduce HCC-related mortality, early diagnosis and therapeutic improvement are essential. Hub differentially expressed genes (HubGs) may serve as potential diagnostic and prognostic biomarkers, also offering therapeutic targets for precise therapies. Therefore, we aimed to identify top-ranked hub genes for the diagnosis, prognosis, and therapy of HCC. METHODS: Through a systematic literature review, 202 HCC-related HubGs were derived from 59 studies, yet consistent detection across these was lacking. Then, we identified top-ranked HubGs (tHubGs) by integrated bioinformatics analysis, highlighting their functions, pathways, and regulators that might be more representative of the diagnosis, prognosis, and therapies of HCC. RESULTS: In this study, eight HubGs (CDK1, AURKA, CDC20, CCNB2, TOP2A, PLK1, BUB1B, and BIRC5) were identified as the tHubGs through the protein-protein interaction (PPI) network and survival analysis. Their differential expression in different stages of HCC, validated using The Cancer Genome Atlas (TCGA) Program database, suggests their potential as early HCC markers. The enrichment analyses revealed some important roles in HCC-related biological processes (BPs), molecular functions (MFs), cellular components (CCs), and signaling pathways. Moreover, the gene regulatory network analysis highlighted key transcription factors (TFs) and microRNAs (miRNAs) that regulate these tHubGs at transcriptional and post-transcriptional. Finally, we selected three drugs (CD437, avrainvillamide, and LRRK2-IN-1) as candidate drugs for HCC treatment as they showed strong binding with all of our proposed and published protein receptors. CONCLUSIONS: The findings of this study may provide valuable resources for early diagnosis, prognosis, and therapies for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Prognosis , Protein Interaction Maps , Computational Biology/methods , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic
2.
PLoS One ; 19(6): e0303065, 2024.
Article in English | MEDLINE | ID: mdl-38843276

ABSTRACT

The detoxification efflux carriers (DTX) are a significant group of multidrug efflux transporter family members that play diverse functions in all kingdoms of living organisms. However, genome-wide identification and characterization of DTX family transporters have not yet been performed in banana, despite its importance as an economic fruit plant. Therefore, a detailed genome-wide analysis of DTX family transporters in banana (Musa acuminata) was conducted using integrated bioinformatics and systems biology approaches. In this study, a total of 37 DTX transporters were identified in the banana genome and divided into four groups (I, II, III, and IV) based on phylogenetic analysis. The gene structures, as well as their proteins' domains and motifs, were found to be significantly conserved. Gene ontology (GO) annotation revealed that the predicted DTX genes might play a vital role in protecting cells and membrane-bound organelles through detoxification mechanisms and the removal of drug molecules from banana cells. Gene regulatory analyses identified key transcription factors (TFs), cis-acting elements, and post-transcriptional regulators (miRNAs) of DTX genes, suggesting their potential roles in banana. Furthermore, the changes in gene expression levels due to pathogenic infections and non-living factor indicate that banana DTX genes play a role in responses to both biotic and abiotic stresses. The results of this study could serve as valuable tools to improve banana quality by protecting them from a range of environmental stresses.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Musa , Phylogeny , Plant Proteins , Musa/genetics , Musa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893400

ABSTRACT

The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs that may have some adverse effects on the human body. Therefore, the main objective of this study was to carry out an in-silico investigation into the medicinal properties of Petiveria alliacea L. (P. alliacea L.)-mediated phytocompounds for the treatment of SARS-CoV-2 infections since phytochemicals have fewer adverse effects compared to synthetic drugs. To explore potential phytocompounds from P. alliacea L. as candidate drug molecules, we selected the infection-causing main protease (Mpro) of SARS-CoV-2 as the receptor protein. The molecular docking analysis of these receptor proteins with the different phytocompounds of P. alliacea L. was performed using AutoDock Vina. Then, we selected the three top-ranked phytocompounds (myricitrin, engeletin, and astilbin) as the candidate drug molecules based on their highest binding affinity scores of -8.9, -8.7 and -8.3 (Kcal/mol), respectively. Then, a 100 ns molecular dynamics (MD) simulation study was performed for their complexes with Mpro using YASARA software, computed RMSD, RMSF, PCA, DCCM, MM/PBSA, and free energy landscape (FEL), and found their almost stable binding performance. In addition, biological activity, ADME/T, DFT, and drug-likeness analyses exhibited the suitable pharmacokinetics properties of the selected phytocompounds. Therefore, the results of this study might be a useful resource for formulating a safe treatment plan for SARS-CoV-2 infections after experimental validation in wet-lab and clinical trials.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , SARS-CoV-2 , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , COVID-19/virology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38675393

ABSTRACT

SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein-protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.

5.
Biomed Res Int ; 2023: 8832406, 2023.
Article in English | MEDLINE | ID: mdl-38046903

ABSTRACT

In different regions of the world, cowpea (Vigna unguiculata (L.) Walp.) is an important vegetable and an excellent source of protein. It lessens the malnutrition of the underprivileged in developing nations and has some positive effects on health, such as a reduction in the prevalence of cancer and cardiovascular disease. However, occasionally, certain biotic and abiotic stresses caused a sharp fall in cowpea yield. Major RNA interference (RNAi) genes like Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are essential for the synthesis of their associated factors like domain, small RNAs (sRNAs), transcription factors, micro-RNAs, and cis-acting factors that shield plants from biotic and abiotic stresses. In this study, applying BLASTP search and phylogenetic tree analysis with reference to the Arabidopsis RNAi (AtRNAi) genes, we discovered 28 VuRNAi genes, including 7 VuDCL, 14 VuAGO, and 7 VuRDR genes in cowpea. We looked at the domains, motifs, gene structures, chromosomal locations, subcellular locations, gene ontology (GO) terms, and regulatory factors (transcription factors, micro-RNAs, and cis-acting elements (CAEs)) to characterize the VuRNAi genes and proteins in cowpea in response to stresses. Predicted VuDCL1, VuDCL2(a, b), VuAGO7, VuAGO10, and VuRDR6 genes might have an impact on cowpea growth, development of the vegetative and flowering stages, and antiviral defense. The VuRNAi gene regulatory features miR395 and miR396 might contribute to grain quality improvement, immunity boosting, and pathogen infection resistance under salinity and drought conditions. Predicted CAEs from the VuRNAi genes might play a role in plant growth and development, improving grain quality and production and protecting plants from biotic and abiotic stresses. Therefore, our study provides crucial information about the functional roles of VuRNAi genes and their associated components, which would aid in the development of future cowpeas that are more resilient to biotic and abiotic stress. The manuscript is available as a preprint at this link: doi:10.1101/2023.02.15.528631v1.


Subject(s)
MicroRNAs , Vigna , Vigna/genetics , RNA Interference , Phylogeny , Gene Expression Regulation, Plant/genetics , Plants, Genetically Modified/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/genetics
6.
Medicina (Kaunas) ; 59(10)2023 09 24.
Article in English | MEDLINE | ID: mdl-37893423

ABSTRACT

Background and Objectives: Breast cancer (BC) is one of the major causes of cancer-related death in women globally. Proper identification of BC-causing hub genes (HubGs) for prognosis, diagnosis, and therapies at an earlier stage may reduce such death rates. However, most of the previous studies detected HubGs through non-robust statistical approaches that are sensitive to outlying observations. Therefore, the main objectives of this study were to explore BC-causing potential HubGs from robustness viewpoints, highlighting their early prognostic, diagnostic, and therapeutic performance. Materials and Methods: Integrated robust statistics and bioinformatics methods and databases were used to obtain the required results. Results: We robustly identified 46 common differentially expressed genes (cDEGs) between BC and control samples from three microarrays (GSE26910, GSE42568, and GSE65194) and one scRNA-seq (GSE235168) dataset. Then, we identified eight cDEGs (COL11A1, COL10A1, CD36, ACACB, CD24, PLK1, UBE2C, and PDK4) as the BC-causing HubGs by the protein-protein interaction (PPI) network analysis of cDEGs. The performance of BC and survival probability prediction models with the expressions of HubGs from two independent datasets (GSE45827 and GSE54002) and the TCGA (The Cancer Genome Atlas) database showed that our proposed HubGs might be considered as diagnostic and prognostic biomarkers, where two genes, COL11A1 and CD24, exhibit better performance. The expression analysis of HubGs by Box plots with the TCGA database in different stages of BC progression indicated their early diagnosis and prognosis ability. The HubGs set enrichment analysis with GO (Gene ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways disclosed some BC-causing biological processes, molecular functions, and pathways. Finally, we suggested the top-ranked six drug molecules (Suramin, Rifaximin, Telmisartan, Tukysa Tucatinib, Lynparza Olaparib, and TG.02) for the treatment of BC by molecular docking analysis with the proposed HubGs-mediated receptors. Molecular docking analysis results also showed that these drug molecules may inhibit cancer-related post-translational modification (PTM) sites (Succinylation, phosphorylation, and ubiquitination) of hub proteins. Conclusions: This study's findings might be valuable resources for diagnosis, prognosis, and therapies at an earlier stage of BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Transcriptome/genetics , Molecular Docking Simulation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Early Detection of Cancer , Gene Expression Profiling/methods , Prognosis , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks
7.
BMC Med Genomics ; 16(1): 64, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991484

ABSTRACT

BACKGROUND: Detection of appropriate receptor proteins and drug agents are equally important in the case of drug discovery and development for any disease. In this study, an attempt was made to explore colorectal cancer (CRC) causing molecular signatures as receptors and drug agents as inhibitors by using integrated statistics and bioinformatics approaches. METHODS: To identify the important genes that are involved in the initiation and progression of CRC, four microarray datasets (GSE9348, GSE110224, GSE23878, and GSE35279) and an RNA_Seq profiles (GSE50760) were downloaded from the Gene Expression Omnibus database. The datasets were analyzed by a statistical r-package of LIMMA to identify common differentially expressed genes (cDEGs). The key genes (KGs) of cDEGs were detected by using the five topological measures in the protein-protein interaction network analysis. Then we performed in-silico validation for CRC-causing KGs by using different web-tools and independent databases. We also disclosed the transcriptional and post-transcriptional regulatory factors of KGs by interaction network analysis of KGs with transcription factors (TFs) and micro-RNAs. Finally, we suggested our proposed KGs-guided computationally more effective candidate drug molecules compared to other published drugs by cross-validation with the state-of-the-art alternatives of top-ranked independent receptor proteins. RESULTS: We identified 50 common differentially expressed genes (cDEGs) from five gene expression profile datasets, where 31 cDEGs were downregulated, and the rest 19 were up-regulated. Then we identified 11 cDEGs (CXCL8, CEMIP, MMP7, CA4, ADH1C, GUCA2A, GUCA2B, ZG16, CLCA4, MS4A12 and CLDN1) as the KGs. Different pertinent bioinformatic analyses (box plot, survival probability curves, DNA methylation, correlation with immune infiltration levels, diseases-KGs interaction, GO and KEGG pathways) based on independent databases directly or indirectly showed that these KGs are significantly associated with CRC progression. We also detected four TFs proteins (FOXC1, YY1, GATA2 and NFKB) and eight microRNAs (hsa-mir-16-5p, hsa-mir-195-5p, hsa-mir-203a-3p, hsa-mir-34a-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-429, and hsa-mir-335-5p) as the key transcriptional and post-transcriptional regulators of KGs. Finally, our proposed 15 molecular signatures including 11 KGs and 4 key TFs-proteins guided 9 small molecules (Cyclosporin A, Manzamine A, Cardidigin, Staurosporine, Benzo[A]Pyrene, Sitosterol, Nocardiopsis Sp, Troglitazone, and Riccardin D) were recommended as the top-ranked candidate therapeutic agents for the treatment against CRC. CONCLUSION: The findings of this study recommended that our proposed target proteins and agents might be considered as the potential diagnostic, prognostic and therapeutic signatures for CRC.


Subject(s)
Colorectal Neoplasms , Transcriptome , Humans , Gene Expression Profiling , Early Detection of Cancer , Computational Biology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
8.
Med Oncol ; 40(5): 129, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964397

ABSTRACT

Scientists are finding the most effective chemotherapeutic agents for the treatment of cancer. In the present study, we evaluated the anticancer mechanism of DPPG, a derivative of DAPG (2,4-diacetylphloroglucinol), for the first time. DPPG and DAPG inhibited 83 and 59% of human colorectal cancer HCT116 cell growth at 40.0 µg/ml, and 74 and 57% of human lung cancer A549 cell growth at 10.0 µg/ml concentrations respectively. Furthermore, DPPG and DAPG inhibited 97 and 73% colony formation of the HCT116 cells at 20.0 µg/ml concentration. DPPG and DAPG induced apoptosis in the HCT116 and A549 cells that was confirmed by Hoechst 33342 and FITC-annexin V staining. This result also revealed that ROS generated in both the HCT116 and A549 cells after treatment with DPPG. However, no ROS production was observed in HCT116 and A549 cells after treatment with DAPG. Both DAPG and DPPG significantly increased the CASP3 protein expression that was detected by staining the cells with the super-view 488-CASP3 substrate. Expression of WNT1 gene was eliminated in DPPG and DAPG treated HCT116. Expression of MAPK1 gene was entirely abolished in DPPG treated cells, whereas a significant decrease was observed for DAPG. An intense band of CASP8 gene product was observed agarose gel for DPPG treated HCT116 cells than DAPG. Molecular docking simulation showed the high binding affinities (≥ 6.5 kcal/mol) of DPPG and DAPG with target proteins WNT1, MAPK1, CASP8, and CASP3 in HCT116 cells. This manuscript demonstrated that DAPG and DPPG inhibited lung and colorectal cancer cells by inducing apoptosis. DAPG and DPPG inhibited A549 and HCT116 cells growth by inducing apoptosis.


Subject(s)
Apoptosis , Colorectal Neoplasms , Humans , Cell Line, Tumor , Caspase 3 , Molecular Docking Simulation , Cell Proliferation , Lung , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , HCT116 Cells
9.
PLoS One ; 18(3): e0281981, 2023.
Article in English | MEDLINE | ID: mdl-36913345

ABSTRACT

The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different variants of effective drugs. Disease-causing gene-mediated proteins are usually used as receptors to explore effective drug molecules. In this study, we analyzed two different RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR, LIMMA, weighted gene co-expression network and robust rank aggregation approaches, which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host genomic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly enriched some crucial biological processes, molecular functions, cellular components and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infections. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1, ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcriptional regulators of HubGs. Then, we conducted a molecular docking analysis to determine potential drug candidates that could interact with HubGs-mediated receptors. This analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib, Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore, the findings of this study might be useful resources for diagnosis and therapies of SARS-CoV-2 infections.


Subject(s)
COVID-19 , MicroRNAs , Proscillaridin , Humans , COVID-19/diagnosis , COVID-19/genetics , Transcriptome , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Molecular Docking Simulation , Aurora Kinase A/genetics , MicroRNAs/genetics , Gene Regulatory Networks , Biomarkers , Genomics , COVID-19 Testing
10.
Cancers (Basel) ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36900162

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers with a high mortality rate. Early diagnosis and therapies for CRC may reduce the mortality rate. However, so far, no researchers have yet investigated core genes (CGs) rigorously for early diagnosis, prognosis, and therapies of CRC. Therefore, an attempt was made in this study to explore CRC-related CGs for early diagnosis, prognosis, and therapies. At first, we identified 252 common differentially expressed genes (cDEGs) between CRC and control samples based on three gene-expression datasets. Then, we identified ten cDEGs (AURKA, TOP2A, CDK1, PTTG1, CDKN3, CDC20, MAD2L1, CKS2, MELK, and TPX2) as the CGs, highlighting their mechanisms in CRC progression. The enrichment analysis of CGs with GO terms and KEGG pathways revealed some crucial biological processes, molecular functions, and signaling pathways that are associated with CRC progression. The survival probability curves and box-plot analyses with the expressions of CGs in different stages of CRC indicated their strong prognostic performance from the earlier stage of the disease. Then, we detected CGs-guided seven candidate drugs (Manzamine A, Cardidigin, Staurosporine, Sitosterol, Benzo[a]pyrene, Nocardiopsis sp., and Riccardin D) by molecular docking. Finally, the binding stability of four top-ranked complexes (TPX2 vs. Manzamine A, CDC20 vs. Cardidigin, MELK vs. Staurosporine, and CDK1 vs. Riccardin D) was investigated by using 100 ns molecular dynamics simulation studies, and their stable performance was observed. Therefore, the output of this study may play a vital role in developing a proper treatment plan at the earlier stages of CRC.

11.
Sci Rep ; 13(1): 4685, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949176

ABSTRACT

Some recent studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other through the shared genes. Therefore, in this study, an attempt was made to explore common genomic biomarkers for SARS-CoV-2 infections and IPF disease highlighting their functions, pathways, regulators and associated drug molecules. At first, we identified 32 statistically significant common differentially expressed genes (cDEGs) between disease (SARS-CoV-2 and IPF) and control samples of RNA-Seq profiles by using a statistical r-package (edgeR). Then we detected 10 cDEGs (CXCR4, TNFAIP3, VCAM1, NLRP3, TNFAIP6, SELE, MX2, IRF4, UBD and CH25H) out of 32 as the common hub genes (cHubGs) by the protein-protein interaction (PPI) network analysis. The cHubGs regulatory network analysis detected few key TFs-proteins and miRNAs as the transcriptional and post-transcriptional regulators of cHubGs. The cDEGs-set enrichment analysis identified some crucial SARS-CoV-2 and IPF causing common molecular mechanisms including biological processes, molecular functions, cellular components and signaling pathways. Then, we suggested the cHubGs-guided top-ranked 10 candidate drug molecules (Tegobuvir, Nilotinib, Digoxin, Proscillaridin, Simeprevir, Sorafenib, Torin 2, Rapamycin, Vancomycin and Hesperidin) for the treatment against SARS-CoV-2 infections with IFP diseases as comorbidity. Finally, we investigated the resistance performance of our proposed drug molecules compare to the already published molecules, against the state-of-the-art alternatives publicly available top-ranked independent receptors by molecular docking analysis. Molecular docking results suggested that our proposed drug molecules would be more effective compare to the already published drug molecules. Thus, the findings of this study might be played a vital role for diagnosis and therapies of SARS-CoV-2 infections with IPF disease as comorbidity risk.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Molecular Docking Simulation , Drug Repositioning , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Computational Biology
12.
Gene ; 861: 147234, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36736866

ABSTRACT

BACKGROUND: Individual genome-wide association studies (GWAS) or single case-specific meta-analyses may not be sufficient evidence to take action against a specific gene function. Thus, we tried to determine a consensus association between the IL-6 gene rs1800795 polymorphism and multiple disease risks through an updated statistical meta-analysis. METHOD: After systematically searching online databases, we found 149 case-control relevant datasets with a sample size of 96,153 (cases: 38,291 and controls: 57862) and conducted the meta-analysis using updated statistical models. RESULTS: The analyses of this comprehensive meta-analysis revealed a significant association between IL-6 -174G/C polymorphism and overall disorder risk under all genetic models (C vs G: OR = 1.11, 95% CI = 1.08-1.13; p-value = 4.8E-17; CC vs GG: OR = 1.19, 95% CI = 1.13-1.26; p-value = 9.4E-12; CG vs GG: OR = 1.10, 95% CI = 1.06-1.14; p-value = 1.1E-07; CC + CG vs GG: OR = 1.13, 95% CI = 1.10-1.17; p-value = 1.1E-13; CC vs CG + GG: OR = 1.18, 95% CI = 1.06-1.31; p-value = 0.0019) and (OR > 1) with Asian ethnicity. The subgroup analyses based on the diseases revealed that the polymorphism was highly significantly increasing the risk of coronary artery disease (CAD) under all genetic models. Likewise, a significant association was observed with increased risk under three genetic models of inflammatory diseases (C vs G; CC vs GG; and CC vs CG + GG), and rheumatoid arthritis (C vs G; CG vs GG; and CC + CG vs GG). Conversely, the -174G/C SNP significantly decreased the risk of ischemic stroke under the two genetic models (C vs G; and CG vs GG). However, the other diseases included in this study showed no significant association with IL-6 (-174G/C) polymorphism. CONCLUSION: This meta-analysis provided strong evidence for the association between IL-6 gene rs1800795 polymorphism and multiple disease risks. The IL-6 gene could be a useful prognostic biomarker for CAD, inflammatory disease, ischemic stroke, and rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Ischemic Stroke , Humans , Genetic Predisposition to Disease , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Case-Control Studies
13.
Curr Cancer Drug Targets ; 23(7): 547-563, 2023.
Article in English | MEDLINE | ID: mdl-36786134

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death globally. The mechanisms underlying the development of HCC are mostly unknown till now. OBJECTIVE: The main goal of this study was to identify potential drug target proteins and agents for the treatment of HCC. METHODS: The publicly available three independent mRNA expression profile datasets were downloaded from the NCBI-GEO database to explore common differentially expressed genes (cDEGs) between HCC and control samples using the Statistical LIMMA approach. Hub-cDEGs as drug targets highlighting their functions, pathways, and regulators were identified by using integrated bioinformatics tools and databases. Finally, Hub-cDEGs-guided top-ranked drug agents were identified by molecular docking study for HCC. RESULTS: We identified 160 common DEGs (cDEGs) from three independent mRNA expression datasets in which ten cDEGs (CDKN3, TK1, NCAPG, CDCA5, RACGAP1, AURKA, PRC1, UBE2T, MELK, and ASPM) were selected as Hub-cDEGs. The GO functional and KEGG pathway enrichment analysis of Hub-cDEGs revealed some crucial cancer-stimulating biological processes, molecular functions, cellular components, and signaling pathways. The interaction network analysis identified three TF proteins and five miRNAs as the key transcriptional and post-transcriptional regulators of HubcDEGs. Then, we detected the proposed Hub-cDEGs guided top-ranked three anti-HCC drug molecules (Dactinomycin, Vincristine, Sirolimus) that were also highly supported by the already published top-ranked HCC-causing Hub-DEGs mediated receptors. CONCLUSION: The findings of this study would be useful resources for diagnosis, prognosis, and therapies of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Molecular Docking Simulation , Gene Expression Profiling , Gene Regulatory Networks , Computational Biology , RNA, Messenger , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Conjugating Enzymes/genetics
14.
Comput Biol Med ; 152: 106411, 2023 01.
Article in English | MEDLINE | ID: mdl-36502691

ABSTRACT

Pancreatic cancer (PC) is one of the leading causes of cancer-related death globally. So, identification of potential molecular signatures is required for diagnosis, prognosis, and therapies of PC. In this study, we detected 71 common differentially expressed genes (cDEGs) between PC and control samples from four microarray gene-expression datasets (GSE15471, GSE16515, GSE71989, and GSE22780) by using robust statistical and machine learning approaches, since microarray gene-expression datasets are often contaminated by outliers due to several steps involved in the data generating processes. Then we detected 8 cDEGs (ADAM10, COL1A2, FN1, P4HB, ITGB1, ITGB5, ANXA2, and MYOF) as the PC-causing key genes (KGs) by the protein-protein interaction (PPI) network analysis. We validated the expression patterns of KGs between case and control samples by box plot analysis with the TCGA and GTEx databases. The proposed KGs showed high prognostic power with the random forest (RF) based prediction model and Kaplan-Meier-based survival probability curve. The KGs regulatory network analysis detected few transcriptional and post-transcriptional regulators for KGs. The cDEGs-set enrichment analysis revealed some crucial PC-causing molecular functions, biological processes, cellular components, and pathways that are associated with KGs. Finally, we suggested KGs-guided five repurposable drug molecules (Linsitinib, CX5461, Irinotecan, Timosaponin AIII, and Olaparib) and a new molecule (NVP-BHG712) against PC by molecular docking. The stability of the top three protein-ligand complexes was confirmed by molecular dynamic (MD) simulation studies. The cross-validation and some literature reviews also supported our findings. Therefore, the finding of this study might be useful resources to the researchers and medical doctors for diagnosis, prognosis and therapies of PC by the wet-lab validation.


Subject(s)
Pancreatic Neoplasms , Transcriptome , Humans , Gene Expression Profiling , Molecular Docking Simulation , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Biomarkers, Tumor/genetics , Genomics , Gene Expression Regulation, Neoplastic , Computational Biology , Pancreatic Neoplasms
15.
Biomed Res Int ; 2022: 4955209, 2022.
Article in English | MEDLINE | ID: mdl-36177060

ABSTRACT

Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are known as the three major gene families that act as the critical components of RNA interference or silencing mechanisms through the noncoding small RNA molecules (miRNA and siRNA) to regulate the expressions of protein-coding genes in eukaryotic organisms. However, most of their characteristics including structures, chromosomal location, subcellular locations, regulatory elements, and gene networking were not rigorously studied. Our analysis identified 7 TaDCL, 39 TaAGO, and 16 TaRDR genes as RNA interference (RNAi) genes from the wheat genome. Phylogenetic analysis of predicted RNAi proteins with the RNAi proteins of Arabidopsis and rice showed that the predicted proteins of TaDCL, TaAGO, and TaRDR groups are clustered into four, eight, and four subgroups, respectively. Domain, 3D protein structure, motif, and exon-intron structure analyses showed that these proteins conserve identical characteristics within groups and maintain differences between groups. The nonsynonymous/synonymous mutation ratio (Ka/Ks) < 1 suggested that these protein sequences conserve some purifying functions. RNAi genes networking with TFs revealed that ERF, MIKC-MADS, C2H2, BBR-BPC, MYB, and Dof are the key transcriptional regulators of the predicted RNAi-related genes. The cis-regulatory element (CREs) analysis detected some important CREs of RNAi genes that are significantly associated with light, stress, and hormone responses. Expression analysis based on an online database exhibited that almost all of the predicted RNAi genes are expressed in different tissues and organs. A case-control study from the gene expression level showed that some RNAi genes significantly responded to the drought and heat stresses. Overall results would therefore provide an excellent basis for in-depth molecular investigation of these genes and their regulatory elements for wheat crop improvement against different stressors.


Subject(s)
MicroRNAs , Triticum , Case-Control Studies , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Hormones , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Interference , RNA, Small Interfering , RNA-Dependent RNA Polymerase/genetics , Stress, Physiological , Triticum/genetics , Triticum/metabolism
16.
Vaccines (Basel) ; 10(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36016137

ABSTRACT

The pandemic of SARS-CoV-2 infections is a severe threat to human life and the world economic condition. Although vaccination has reduced the outspread, but still the situation is not under control because of the instability of RNA sequence patterns of SARS-CoV-2, which requires effective drugs. Several studies have suggested that the SARS-CoV-2 infection causing hub differentially expressed genes (Hub-DEGs). However, we observed that there was not any common hub gene (Hub-DEGs) in our analyses. Therefore, it may be difficult to take a common treatment plan against SARS-CoV-2 infections globally. The goal of this study was to examine if more representative Hub-DEGs from published studies by means of hub of Hub-DEGs (hHub-DEGs) and associated potential candidate drugs. In this study, we reviewed 41 articles on transcriptomic data analysis of SARS-CoV-2 and found 370 unique hub genes or studied genes in total. Then, we selected 14 more representative Hub-DEGs (AKT1, APP, CXCL8, EGFR, IL6, INS, JUN, MAPK1, STAT3, TNF, TP53, UBA52, UBC, VEGFA) as hHub-DEGs by their protein-protein interaction analysis. Their associated biological functional processes, transcriptional, and post-transcriptional regulatory factors. Then we detected hHub-DEGs guided top-ranked nine candidate drug agents (Digoxin, Avermectin, Simeprevir, Nelfinavir Mesylate, Proscillaridin, Linifanib, Withaferin, Amuvatinib, Atazanavir) by molecular docking and cross-validation for treatment of SARS-CoV-2 infections. Therefore, the findings of this study could be useful in formulating a common treatment plan against SARS-CoV-2 infections globally.

17.
PLoS One ; 17(8): e0273042, 2022.
Article in English | MEDLINE | ID: mdl-35972942

ABSTRACT

HIF1A gene polymorphisms have been confirmed the association with cancer risk through the statistical meta-analysis based on single genetic association (SGA) studies. A good number SGA studies also investigated the association of HIF1A gene with several other diseases, but no researcher yet performed statistical meta-analysis to confirm this association more accurately. Therefore, in this paper, we performed a statistical meta-analysis to draw a consensus decision about the association of HIF1A gene polymorphisms with several diseases except cancers giving the weight on large sample size. This meta-analysis was performed based on 41 SGA study's findings, where the polymorphisms rs11549465 (1772 C/T) and rs11549467 (1790 G/A) of HIF1A gene were analyzed based on 11544 and 7426 cases and 11494 and 7063 control samples, respectively. Our results showed that the 1772 C/T polymorphism is not significantly associated with overall disease risks. The 1790 G/A polymorphism was significantly associated with overall diseases under recessive model (AA vs. AG + GG), which indicates that the A allele is responsible for overall diseases though it is recessive. The subgroup analysis based on ethnicity showed the significant association of 1772 C/T polymorphism with overall disease for Caucasian population under the all genetic models, which indicates that the C allele controls overall diseases. The ethnicity subgroup showed the significant association of 1790 G/A polymorphism with overall disease for Asian population under the recessive model (AA vs. AG + GG), which indicates that the A allele is responsible for overall diseases. The subgroup analysis based on disease types showed that 1772 C/T is significantly associated with chronic obstructive pulmonary disease (COPD) under two genetic models (C vs. T and CC vs. CT + TT), skin disease under two genetic models (CC vs. TT and CC + CT vs. TT), and diabetic complications under three genetic models (C vs. T, CT vs. TT and CC + CT vs. TT), where C allele is high risk factor for skin disease and diabetic complications (since, ORs > 1), but low risk factor for COPD (since, ORs < 1). Also the 1790 G/A variant significantly associated with the subgroup of cardiovascular disease (CVD) under homozygote model, diabetic complications under allelic and homozygote models, and other disease under four genetic models, where the A is high risk factor for diabetic complications and low risk factor for CVD. Thus, this study provided more evidence that the HIF1A gene is significantly associated with COPD, CVD, skin disease and diabetic complications. These might be the severe comorbidities and risk factors for multiple cancers due to the effect of HIF1A gene and need further investigations accumulating large number of studies.


Subject(s)
Cardiovascular Diseases , Genetic Predisposition to Disease , Hypoxia-Inducible Factor 1, alpha Subunit , Pulmonary Disease, Chronic Obstructive , Cardiovascular Diseases/genetics , Case-Control Studies , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/genetics , Risk Factors
18.
Discov Oncol ; 13(1): 79, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35994213

ABSTRACT

Cervical cancer (CC) is considered as the fourth most common women cancer globally.that shows malignant features of local infiltration and invasion into adjacent organs and tissues. There are several individual studies in the literature that explored CC-causing hub-genes (HubGs), however, we observed that their results are not so consistent. Therefore, the main objective of this study was to explore hub of the HubGs (hHubGs) that might be more representative CC-causing HubGs compare to the single study based HubGs. We reviewed 52 published articles and found 255 HubGs/studied-genes in total. Among them, we selected 10 HubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) as the hHubGs by the protein-protein interaction (PPI) network analysis. Then, we validated their differential expression patterns between CC and control samples through the GPEA database. The enrichment analysis of HubGs revealed some crucial CC-causing biological processes (BPs), molecular functions (MFs) and cellular components (CCs) by involving hHubGs. The gene regulatory network (GRN) analysis identified four TFs proteins and three miRNAs as the key transcriptional and post-transcriptional regulators of hHubGs. Then, we identified hHubGs-guided top-ranked FDA-approved 10 candidate drugs and validated them against the state-of-the-arts independent receptors by molecular docking analysis. Finally, we investigated the binding stability of the top-ranked three candidate drugs (Docetaxel, Temsirolimus, Paclitaxel) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore the finding of this study might be the useful resources for CC diagnosis and therapies.

19.
Curr Protein Pept Sci ; 23(11): 744-756, 2022.
Article in English | MEDLINE | ID: mdl-35762552

ABSTRACT

Lysine succinylation is a post-translational modification (PTM) of protein in which a succinyl group (-CO-CH2-CH2-CO2H) is added to a lysine residue of protein that reverses lysine's positive charge to a negative charge and leads to the significant changes in protein structure and function. It occurs on a wide range of proteins and plays an important role in various cellular and biological processes in both eukaryotes and prokaryotes. Beyond experimentally identified succinylation sites, there have been a lot of studies for developing sequence-based prediction using machine learning approaches, because it has the promise of being extremely time-saving, accurate, robust, and cost-effective. Despite these benefits for computational prediction of lysine succinylation sites for different species, there are a number of issues that need to be addressed in the design and development of succinylation site predictors. In spite of the fact that many studies used different statistical and machine learning computational tools, only a few studies have focused on these bioinformatics issues in depth. Therefore, in this comprehensive comparative review, an attempt is made to present the latest advances in the prediction models, datasets, and online resources, as well as the obstacles and limits, to provide an advantageous guideline for developing more suitable and effective succinylation site prediction tools.


Subject(s)
Lysine , Proteins , Lysine/metabolism , Amino Acid Sequence , Proteins/chemistry , Computational Biology , Protein Processing, Post-Translational
20.
PLoS One ; 17(5): e0268967, 2022.
Article in English | MEDLINE | ID: mdl-35617355

ABSTRACT

Integrated bioinformatics and statistical approaches are now playing the vital role in identifying potential molecular biomarkers more accurately in presence of huge number of alternatives for disease diagnosis, prognosis and therapies by reducing time and cost compared to the wet-lab based experimental procedures. Breast cancer (BC) is one of the leading causes of cancer related deaths for women worldwide. Several dry-lab and wet-lab based studies have identified different sets of molecular biomarkers for BC. But they did not compare their results to each other so much either computationally or experimentally. In this study, an attempt was made to propose a set of molecular biomarkers that might be more effective for BC diagnosis, prognosis and therapies, by using the integrated bioinformatics and statistical approaches. At first, we identified 190 differentially expressed genes (DEGs) between BC and control samples by using the statistical LIMMA approach. Then we identified 13 DEGs (AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD, BCL11A, and TP53INP1) as the key genes (KGs) by protein-protein interaction (PPI) network analysis. Then we investigated the pathogenetic processes of DEGs highlighting KGs by GO terms and KEGG pathway enrichment analysis. Moreover, we disclosed the transcriptional and post-transcriptional regulatory factors of KGs by their interaction network analysis with the transcription factors (TFs) and micro-RNAs. Both supervised and unsupervised learning's including multivariate survival analysis results confirmed the strong prognostic power of the proposed KGs. Finally, we suggested KGs-guided computationally more effective seven candidate drugs (NVP-BHG712, Nilotinib, GSK2126458, YM201636, TG-02, CX-5461, AP-24534) compared to other published drugs by cross-validation with the state-of-the-art alternatives top-ranked independent receptor proteins. Thus, our findings might be played a vital role in breast cancer diagnosis, prognosis and therapies.


Subject(s)
Breast Neoplasms , Organic Anion Transporters , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Carrier Proteins/metabolism , Computational Biology/methods , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Heat-Shock Proteins/metabolism , Humans , Organic Anion Transporters/genetics , Prognosis , Protein Interaction Maps/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...