Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 5(24): 12675-93, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25544748

ABSTRACT

Mesoderm Inducer in Xenopus Like1 (MIXL1), a paired-type homeobox transcription factor induced by TGF-ß family of ligands is required for early embryonic specification of mesoderm and endoderm. Retrovirally transduced Mixl1 is reported to induce acute myelogenous leukemia (AML) with a high penetrance. But the mechanistic underpinnings of MIXL1 mediated leukemogenesis are unknown. Here, we establish the protooncogene c-REL to be a transcriptional target of MIXL1 by genome wide chromatin immune precipitation. Accordingly, expression of c-REL and its downstream targets BCL2L1 and BCL2A2 are elevated in MIXL1 expressing cells. Notably, MIXL1 regulates c-REL through a zinc finger binding motif, potentially by a MIXL1-Zinc finger protein transcriptional complex. Furthermore, MIXL1 expression is detected in the cancer genome atlas (TCGA) AML samples in a pattern mutually exclusive from that of HOXA9, CDX2 and HLX suggesting the existence of a core, yet distinct HOX transcriptional program. Finally, we demonstrate MIXL1 to be induced by BMP4 and not TGF-ß in primary human hematopoietic stem and progenitor cells. Consequently, MIXL1 expressing AML cells are preferentially sensitive to the BMPR1 kinase inhibitor LDN-193189. These findings support the existence of a novel MIXL1-c REL mediated survival axis in AML that can be targeted by BMPR1 inhibitors. (MIXL1- human gene, Mixl1- mouse ortholog, MIXL1- protein).


Subject(s)
Bone Morphogenetic Protein 4/genetics , Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Animals , Bone Morphogenetic Protein Receptors, Type I/antagonists & inhibitors , Cell Differentiation/physiology , Cell Line, Tumor , Genes, Homeobox , Genes, rel , HEK293 Cells , HL-60 Cells , Homeodomain Proteins/biosynthesis , Humans , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Mice , Molecular Targeted Therapy , U937 Cells
2.
Biol Blood Marrow Transplant ; 16(6): 709-28, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20227509

ABSTRACT

Hematopoietic malignant relapse still remains the major cause of death following allogeneic hematopoietic stem cell transplantation (HSCT). Although there has been a large focus on the immunologic mechanisms responsible for the graft-versus-tumor (GVT) effect or lack thereof, there has been little attention paid to investigating the biologic basis of hematologic malignant disease relapse following allogeneic HSCT. There are a large number of factors that are responsible for the biologic resistance of hematopoietic tumors following allogeneic HSCT. We have focused on 5 major areas including clonal evolution of cancer drug resistance, cancer radiation resistance, genomic basis of leukemia resistance, cancer epigenetics, and resistant leukemia stem cells. We recommend increased funding to pursue 3 broad areas that will significantly enhance our understanding of the biologic basis of malignant relapse after allogeneic HSCT, including: (1) genomic and epigenetic alterations, (2) cancer stem cell biology, and (3) clonal cancer drug and radiation resistance.


Subject(s)
Graft vs Tumor Effect , Hematologic Neoplasms/prevention & control , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation , Biomedical Research , Drug Resistance, Neoplasm/physiology , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic/physiology , Hematologic Neoplasms/etiology , Hematologic Neoplasms/genetics , Humans , Neoplastic Stem Cells/physiology , Radiation Tolerance/physiology , Secondary Prevention , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...