Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(35): 24795-24800, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37601592

ABSTRACT

Heavy water is known to affect many different biological systems, with the most striking effects observed at the cellular level. Many dynamic processes, such as migration or invasion, but also central processes of cell proliferation are measurably inhibited by the presence of deuterium oxide (D2O). Furthermore, individual cell deformabilities are significantly decreased upon D2O treatment. In order to understand the origin of these effects, we studied entangled filamentous actin networks, a commonly used model system for the cytoskeleton, which is considered a central functional element for dynamic cellular processes. Using bulk shear rheology to extract rheological signatures of reconstituted actin networks at varying concentrations of D2O, we found a non-monotonic behavior, which is explainable by a drastic change in the actin network architecture. Applying light scattering and fluorescence microscopy, we were able to demonstrate that the presence of deuterium oxide induces bundling in reconstituted entangled networks of filamentous actin. This constitutes an entirely novel and previously undescribed actin bundling mechanism.

2.
Nanoscale ; 15(16): 7374-7383, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37039012

ABSTRACT

In order to understand and predict the mechanical behaviours of complex, soft biomaterials such as cells or stimuli-responsive hydrogels, it is important to connect how the nanoscale properties of their constituent components impact those of the bulk material. Crosslinked networks of semiflexible polymers are particularly ubiquitous, being underlying mechanical components of biological systems such as cells or ECM, as well as many synthetic or biomimetic materials. Cell-derived components such as filamentous biopolymers or protein crosslinkers are readily available and well-studied model systems. However, as evolutionarily derived materials, they are constrained to a fixed set of structural parameters such as the rigidity and size of the filaments, or the valency and strength of binding of crosslinkers forming inter-filament connections. By implementing a synthetic model system based on the self-assembly of DNA oligonucleotides into nanometer-scale tubes and simple crosslinking constructs, we used the thermodynamic programmability of DNA hybridization to explore the impact of binding affinity on bulk mechanical response. Stepwise tuning the crosslinking affinity over a range from transient to thermodynamically stable shows an according change in viscoelastic behaviour from loosely entangled to elastic, consistent with models accounting for generalized inter-filament interactions. While characteristic signatures of concentration-dependent changes in network morphology found in some other natural and synthetic filament-crosslinker systems were not apparent, the presence of a distinct elasticity increase within a narrow range of conditions points towards potential subtle alterations of crosslink-filament architecture. Here, we demonstrate a new synthetic approach for gaining a deeper understanding of both biological as well as engineered hydrogel systems.


Subject(s)
DNA , Polymers , Polymers/chemistry , DNA/chemistry , Biopolymers , Cytoskeleton/metabolism , Elasticity , Hydrogels/chemistry
3.
Adv Mater ; 33(29): e2101840, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34085345

ABSTRACT

Solvent conditions are unexpectedly sufficient to drastically and reversibly slow down cells. In vitro on the molecular level, protein-solvent interactions drastically change in the presence of heavy water (D2 O) and its stronger hydrogen bonds. Adding D2 O to the cell medium of living cells increases the molecular intracellular viscosity. While cell morphology and phenotype remain unchanged, cellular dynamics transform into slow motion in a changeable manner. This is exemplified in the slowdown of cell proliferation and migration, which is caused by a reversible gelation of the cytoplasm. In analogy to the time-temperature superposition principle, where temperature is replaced by D2 O, an increase in viscosity slows down the effective time. Actin networks, crucial structures in the cytoplasm, switch from a power-law-like viscoelastic to a more rubber-like elastic behavior. The resulting intracellular resistance and dissipation impair cell movement. Since cells are highly adaptive non-equilibrium systems, they usually respond irreversibly from a thermodynamic perspective. D2 O induced changes, however, are fully reversible and their effects are independent of signaling as well as expression. The stronger hydrogen bonds lead to glass-like, drawn-out intramolecular dynamics, which may facilitate longer storage times of biological matter, for instance, during transport of organ transplants.


Subject(s)
Temperature , Hydrogen Bonding , Solvents , Thermodynamics , Viscosity
4.
Soft Matter ; 17(14): 3954-3962, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33724291

ABSTRACT

The cytoskeleton is a major determinant of cell mechanics, and alterations in the central mechanical aspects of cells are observed during many pathological situations. Therefore, it is essential to investigate the interplay between the main filament systems of the cytoskeleton in the form of composite networks. Here, we investigate the role of keratin intermediate filaments (IFs) in network strength by studying in vitro reconstituted actin and keratin 8/18 composite filament networks via bulk shear rheology. We co-polymerized these structural proteins in varying ratios and recorded how their relative content affects the overall mechanical response of the various composites. For relatively small deformations, we found that all composites exhibited an intermediate linear viscoelastic behaviour compared to that of the pure networks. In stark contrast, when larger deformations were imposed the composites displayed increasing strain stiffening behaviour with increasing keratin content. The extent of strain stiffening is much more pronounced than in corresponding experiments performed with vimentin IF as a composite network partner for actin. Our results provide new insights into the mechanical interplay between actin and keratin filaments in which keratin provides reinforcement to actin. This interplay may contribute to the overall integrity of cells. Hence, the high keratin 8/18 content of mechanically stressed simple epithelial cell layers, as found in the lung and the intestine, provides an explanation for their exceptional stability.


Subject(s)
Intermediate Filaments , Keratins , Actin Cytoskeleton , Actins , Cytoskeleton
5.
Molecules ; 22(10)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29064446

ABSTRACT

Bundled actin structures play an essential role in the mechanical response of the actin cytoskeleton in eukaryotic cells. Although responsible for crucial cellular processes, they are rarely investigated in comparison to single filaments and isotropic networks. Presenting a highly anisotropic structure, the determination of the mechanical properties of individual bundles was previously achieved through passive approaches observing bending deformations induced by thermal fluctuations. We present a new method to determine the bending stiffness of individual bundles, by measuring the decay of an actively induced oscillation. This approach allows us to systematically test anisotropic, bundled structures. Our experiments revealed that thin, depletion force-induced bundles behave as semiflexible polymers and obey the theoretical predictions determined by the wormlike chain model. Thickening an individual bundle by merging it with other bundles enabled us to study effects that are solely based on the number of involved filaments. These thicker bundles showed a frequency-dependent bending stiffness, a behavior that is inconsistent with the predictions of the wormlike chain model. We attribute this effect to internal processes and give a possible explanation with regard to the wormlike bundle theory.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Biomechanical Phenomena , Kinetics , Models, Chemical , Optical Tweezers , Protein Multimerization , Rheology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...