Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; : e0057624, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904377

ABSTRACT

The metabolic intimacy of symbiosis often demands the work of specialists. Natural products and defensive secondary metabolites can drive specificity by ensuring infection and propagation across host generations. But in contrast to bacteria, little is known about the diversity and distribution of natural product biosynthetic pathways among fungi and how they evolve to facilitate symbiosis and adaptation to their host environment. In this study, we define the secondary metabolism of Escovopsis and closely related genera, symbionts in the gardens of fungus-farming ants. We ask how the gain and loss of various biosynthetic pathways correspond to divergent lifestyles. Long-read sequencing allowed us to define the chromosomal features of representative Escovopsis strains, revealing highly reduced genomes composed of seven to eight chromosomes. The genomes are highly syntenic with macrosynteny decreasing with increasing phylogenetic distance, while maintaining a high degree of mesosynteny. An ancestral state reconstruction analysis of biosynthetic pathways revealed that, while many secondary metabolites are shared with non-ant-associated Sordariomycetes, 56 pathways are unique to the symbiotic genera. Reflecting adaptation to diverging ant agricultural systems, we observe that the stepwise acquisition of these pathways mirrors the ecological radiations of attine ants and the dynamic recruitment and replacement of their fungal cultivars. As different clades encode characteristic combinations of biosynthetic gene clusters, these delineating profiles provide important insights into the possible mechanisms underlying specificity between these symbionts and their fungal hosts. Collectively, our findings shed light on the evolutionary dynamic nature of secondary metabolism in Escovopsis and its allies, reflecting adaptation of the symbionts to an ancient agricultural system.IMPORTANCEMicrobial symbionts interact with their hosts and competitors through a remarkable array of secondary metabolites and natural products. Here, we highlight the highly streamlined genomic features of attine-associated fungal symbionts. The genomes of Escovopsis species, as well as species from other symbiont genera, many of which are common with the gardens of fungus-growing ants, are defined by seven chromosomes. Despite a high degree of metabolic conservation, we observe some variation in the symbionts' potential to produce secondary metabolites. As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides with attine transitions in agricultural systems, we highlight the likely role of these metabolites in mediating adaptation by a group of highly specialized symbionts.

2.
Microbiol Spectr ; 11(1): e0272822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688645

ABSTRACT

Staphylococcus aureus is a major cause of bacteremia and other hospital-acquired infections. The cell-wall active antibiotic vancomycin is commonly used to treat both methicillin-resistant (MRSA) and sensitive (MSSA) infections. Vancomycin intermediate S. aureus (VISA) variants can arise through de novo mutations. Here, we performed pilot experiments to develop a combined PCR/long-read sequencing-based method for detection of previously known VISA-causing mutations. Primers were designed to generate 10 amplicons covering 16 genes associated with the VISA phenotype. We sequenced amplicon pools as long reads with Oxford Nanopore adapter ligation on Flongle flow cells. We then detected mutations by mapping reads against a parental consensus or known reference sequence and comparing called variants against a database of known VISA mutations from laboratory selection. Each amplicon in the pool was sequenced to high (>1,000×) coverage, and no relationship was found between amplicon length and coverage. We also were able to detect the causative mutation (walK 646C>G) in a VISA mutant derived from the USA300 strain (N384-3 from parental strain N384). Mixing mutant (N384-3) and parental (N384) DNA at various ratios from 0 to 1 mutant suggested a mutation detection threshold of the average minor allele frequency (6.5%) at 95% confidence (two standard errors above mean mutation frequency). The study lays the groundwork for direct S. aureus antibiotic resistance genotype inference using rapid nanopore sequencing from clinical samples. IMPORTANCE Bacteremia mortality is known to increase rapidly with time after infection, making rapid diagnostics and treatment necessary. Successful treatment depends on correct administration of antibiotics based on knowledge of strain antibiotic susceptibility. Staphylococcus aureus is a major causative agent of bacteremia that is also commonly antibiotic resistant. In this work, we develop a method to accelerate detection of a complex, polygenic antibiotic resistance phenotype in S. aureus, vancomycin-intermediate resistance (VISA), through long-read genomic sequencing of amplicons representing genes most commonly mutated in VISA selection. This method both rapidly identifies VISA genotypes and incorporates the most comprehensive database of VISA genetic determinants known to date.


Subject(s)
Bacteremia , Nanopore Sequencing , Staphylococcal Infections , Vancomycin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Microbial Sensitivity Tests , Mutation , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Vancomycin/pharmacology , Vancomycin/therapeutic use , Vancomycin-Resistant Staphylococcus aureus/genetics
3.
mSystems ; 7(1): e0108321, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35040700

ABSTRACT

Phage therapy has been proposed as a possible alternative treatment for infections caused by the ubiquitous bacterial pathogen Staphylococcus aureus. However, successful therapy requires understanding the genetic basis of host range-the subset of strains in a species that could be killed by a particular phage. We searched diverse sets of S. aureus public genome sequences against a database of genes suggested from prior studies to influence host range to look for patterns of variation across the species. We found that genes encoding biosynthesis of molecules that were targets of S. aureus phage adsorption to the outer surface of the cell were the most conserved in the pangenome. Putative phage resistance genes that were core components of the pangenome genes had similar nucleotide diversity, ratio of nonsynonymous to synonymous substitutions, and functionality (measured by delta-bitscore) to other core genes. However, phage resistance genes that were not part of the core genome were significantly less consistent with the core genome phylogeny than all noncore genes in this set, suggesting more frequent movement between strains by horizontal gene transfer. Only superinfection immunity genes encoded by temperate phages inserted in the genome correlated with experimentally determined temperate phage resistance. Taken together, these results suggested that, while phage adsorption genes are heavily conserved in the S. aureus species, HGT may play a significant role in strain-specific evolution of host range patterns. IMPORTANCE Staphylococcus aureus is a widespread, hospital- and community-acquired pathogen that is commonly antibiotic resistant. It causes diverse diseases affecting both the skin and internal organs. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent, such as phage therapy, in which viruses specific to infecting bacteria clear infection. S. aureus phage host range not only determines whether phage therapy will be successful by killing bacteria but also horizontal gene transfer through transduction of host genetic material by phages. In this work, we comprehensively reviewed existing literature to build a list of S. aureus phage resistance genes and searched our database of almost 43,000 S. aureus genomes for these genes to understand their patterns of evolution, finding that prophages' superinfection immunity correlates best with phage resistance and HGT. These findings improved our understanding of the relationship between known phage resistance genes and phage host range in the species.


Subject(s)
Bacteriophages , Staphylococcal Infections , Superinfection , Humans , Staphylococcus aureus/genetics , Virulence , Host Specificity , Anti-Bacterial Agents , Genomics , Staphylococcal Infections/microbiology , Drug Resistance, Microbial
4.
Appl Environ Microbiol ; 87(12): e0021221, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33863703

ABSTRACT

A pervasive pest of stored leguminous products, the bean beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) associates with a simple bacterial community during adulthood. Despite its economic importance, little is known about the compositional stability, heritability, localization, and metabolic potential of the bacterial symbionts of C. maculatus. In this study, we applied community profiling using 16S rRNA gene sequencing to reveal a highly conserved bacterial assembly shared between larvae and adults. Dominated by Firmicutes and Proteobacteria, this community is localized extracellularly along the epithelial lining of the bean beetle's digestive tract. Our analysis revealed that only one species, Staphylococcus gallinarum (phylum Firmicutes), is shared across all developmental stages. Isolation and whole-genome sequencing of S. gallinarum from the beetle gut yielded a circular chromosome (2.8 Mb) and one plasmid (45 kb). The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine, which is increasingly recognized as an important symbiont-supplemented precursor for cuticle biosynthesis in beetles. A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus. The ontogenic conservation of the gut microbiota in the bean beetle, featuring a "core" community composed of S. gallinarum, may be indicative of an adaptive role for the host. In clarifying symbiont localization and metabolic potential, we further our understanding and study of a costly pest of stored products. IMPORTANCE From supplementing essential nutrients to detoxifying plant secondary metabolites and insecticides, bacterial symbionts are a key source of adaptations for herbivorous insect pests. Despite the pervasiveness and geographical range of the bean beetle Callosobruchus maculatus, the role of microbial symbioses in its natural history remains understudied. Here, we demonstrate that the bean beetle harbors a simple gut bacterial community that is stable throughout development. This community localizes along the insect's digestive tract and is largely dominated by Staphylococcus gallinarum. In elucidating symbiont metabolic potential, we highlight its possible adaptive significance for a widespread agricultural pest.


Subject(s)
Coleoptera/microbiology , Gastrointestinal Microbiome/genetics , Genome, Bacterial , Staphylococcus/genetics , Symbiosis , Animals , Female , Genomics , Larva/microbiology , Male , Ovum/microbiology , Staphylococcus/isolation & purification
5.
mSphere ; 6(1)2021 01 13.
Article in English | MEDLINE | ID: mdl-33441407

ABSTRACT

Staphylococcus aureus is a human pathogen that causes serious diseases, ranging from skin infections to septic shock. Bacteriophages (phages) are both natural killers of S. aureus, offering therapeutic possibilities, and important vectors of horizontal gene transfer (HGT) in the species. Here, we used high-throughput approaches to understand the genetic basis of strain-to-strain variation in sensitivity to phages, which defines the host range. We screened 259 diverse S. aureus strains covering more than 40 sequence types for sensitivity to eight phages, which were representatives of the three phage classes that infect the species. The phages were variable in host range, each infecting between 73 and 257 strains. Using genome-wide association approaches, we identified putative loci that affect host range and validated their function using USA300 transposon knockouts. In addition to rediscovering known host range determinants, we found several previously unreported genes affecting bacterial growth during phage infection, including trpA, phoR, isdB, sodM, fmtC, and relA We used the data from our host range matrix to develop predictive models that achieved between 40% and 95% accuracy. This work illustrates the complexity of the genetic basis for phage susceptibility in S. aureus but also shows that with more data, we may be able to understand much of the variation. With a knowledge of host range determination, we can rationally design phage therapy cocktails that target the broadest host range of S. aureus strains and address basic questions regarding phage-host interactions, such as the impact of phage on S. aureus evolution.IMPORTANCEStaphylococcus aureus is a widespread, hospital- and community-acquired pathogen, many strains of which are antibiotic resistant. It causes diverse diseases, ranging from local to systemic infection, and affects both the skin and many internal organs, including the heart, lungs, bones, and brain. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent. One alternative therapy to antibiotics is phage therapy, in which viruses specific to infecting bacteria clear infection. In this work, we identified and validated S. aureus genes that influence phage host range-the number of strains a phage can infect and kill-by testing strains representative of the diversity of the S. aureus species for phage host range and associating the genome sequences of strains with host range. These findings together improved our understanding of how phage therapy works in the bacterium and improve prediction of phage therapy efficacy based on the predicted host range of the infecting strain.


Subject(s)
Host Specificity/genetics , Staphylococcus Phages/physiology , Staphylococcus aureus/genetics , Staphylococcus aureus/virology , Genome, Bacterial , Genome-Wide Association Study/methods , Humans , Phenotype , Staphylococcal Infections/microbiology
6.
Appl Environ Microbiol ; 85(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30902858

ABSTRACT

Bacteria in the genus Staphylococcus are important targets for phage therapy due to their prevalence as pathogens and increasing antibiotic resistance. Here we review Staphylococcus outer surface features and specific phage resistance mechanisms that define the host range, the set of strains that an individual phage can potentially infect. Phage infection goes through five distinct phases: attachment, uptake, biosynthesis, assembly, and lysis. Adsorption inhibition, encompassing outer surface teichoic acid receptor alteration, elimination, or occlusion, limits successful phage attachment and entry. Restriction-modification systems (in particular, type I and IV systems), which target phage DNA inside the cell, serve as the major barriers to biosynthesis as well as transduction and horizontal gene transfer between clonal complexes and species. Resistance to late stages of infection occurs through mechanisms such as assembly interference, in which staphylococcal pathogenicity islands siphon away superinfecting phage proteins to package their own DNA. While genes responsible for teichoic acid biosynthesis, capsule, and restriction-modification are found in most Staphylococcus strains, a variety of other host range determinants (e.g., clustered regularly interspaced short palindromic repeats, abortive infection, and superinfection immunity) are sporadic. The fitness costs of phage resistance through teichoic acid structure alteration could make staphylococcal phage therapies promising, but host range prediction is complex because of the large number of genes involved, and the roles of many of these are unknown. In addition, little is known about the genetic determinants that contribute to host range expansion in the phages themselves. Future research must identify host range determinants, characterize resistance development during infection and treatment, and examine population-wide genetic background effects on resistance selection.


Subject(s)
Host Specificity , Staphylococcus Phages/physiology , Staphylococcus/virology , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Transfer, Horizontal , Genomic Islands/genetics , Host-Pathogen Interactions , Membrane Proteins , Phage Therapy , Staphylococcus/genetics , Staphylococcus Phages/genetics , Teichoic Acids , Virus Assembly
7.
Article in English | MEDLINE | ID: mdl-30687841

ABSTRACT

Staphylococcus aureus is an early colonizer in the lungs of individuals with cystic fibrosis (CF), but surprisingly, only a limited number of genomes from CF-associated S. aureus isolates have been sequenced. Here, we present the whole-genome sequences of 65 S. aureus isolates obtained from 50 individuals with CF.

8.
PeerJ ; 5: e3788, 2017.
Article in English | MEDLINE | ID: mdl-28894651

ABSTRACT

Clustered regularly interspaced short palindromic repeat (CRISPR) systems are the adaptive immune systems of bacteria and archaea against viral infection. While CRISPRs have been exploited as a tool for genetic engineering, their spacer sequences can also provide valuable insights into microbial ecology by linking environmental viruses to their microbial hosts. Despite this importance, metagenomic CRISPR detection remains a major challenge. Here we present a reference-guided CRISPR spacer detection tool (Metagenomic CRISPR Reference-Aided Search Tool-MetaCRAST) that constrains searches based on user-specified direct repeats (DRs). These DRs could be expected from assembly or taxonomic profiles of metagenomes. We compared the performance of MetaCRAST to those of two existing metagenomic CRISPR detection tools-Crass and MinCED-using both real and simulated acid mine drainage (AMD) and enhanced biological phosphorus removal (EBPR) metagenomes. Our evaluation shows MetaCRAST improves CRISPR spacer detection in real metagenomes compared to the de novo CRISPR detection methods Crass and MinCED. Evaluation on simulated metagenomes show it performs better than de novo tools for Illumina metagenomes and comparably for 454 metagenomes. It also has comparable performance dependence on read length and community composition, run time, and accuracy to these tools. MetaCRAST is implemented in Perl, parallelizable through the Many Core Engine (MCE), and takes metagenomic sequence reads and direct repeat queries (FASTA or FASTQ) as input. It is freely available for download at https://github.com/molleraj/MetaCRAST.

9.
PeerJ ; 5: e2844, 2017.
Article in English | MEDLINE | ID: mdl-28097058

ABSTRACT

Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested Halorubrum and Haloquadratum possess most dihydroxyacetone kinase genes while Salinibacter possesses most glycerol-3-phosphate dehydrogenase genes. Using two different methods, we detected fewer CRISPR spacers in Haloquadratum-dominated compared with Halobacteriaceae-dominated saltern metagenomes. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments for each saltern metagenome linked viruses to Haloquadratum walsbyi, there were also alignments indicating interactions with the low abundance taxa Haloarcula and Haloferax. Further examination of the dinucleotide and trinucleotide usage differences between paired viruses and their hosts confirmed viruses and hosts had similar nucleotide usage signatures. Detection of cas genes in the salterns supported the possibility of CRISPR activity. Taken together, our studies suggest similar virus-host interactions exist in different solar salterns and that the glycerol metabolism gene dihydroxyacetone kinase is associated with Haloquadratum and Halorubrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...