Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 7(6): 1019-1027, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34235262

ABSTRACT

The multiscale organizational structure of chromatin in eukaryotic cells is instrumental to DNA transcription, replication, and repair. At mesoscopic length scales, nucleosomes pack in a manner that serves to regulate gene expression through condensation and expansion of the genome. The particular structures that arise and their respective thermodynamic stabilities, however, have yet to be fully resolved. In this study, we combine molecular modeling using the 1CPN mesoscale model of chromatin with nonlinear manifold learning to identify and characterize the structure and free energy of metastable states of short chromatin segments comprising between 4- and 16-nucleosomes. Our results reveal the formation of two previously characterized tetranucleosomal conformations, the "α-tetrahedron" and the "ß-rhombus", which have been suggested to play an important role in the accessibility of DNA and, respectively, induce local chromatin compaction or elongation. The spontaneous formation of these motifs is potentially responsible for the slow nucleosome dynamics observed in experimental studies. Increases of the nucleosome repeat length are accompanied by more pronounced structural irregularity and flexibility and, ultimately, a dynamic liquid-like behavior that allows for frequent structural reorganization. Our findings indicate that tetranucleosome motifs are intrinsically stable structural states, driven by local internucleosomal interactions, and support a mechanistic picture of chromatin packing, dynamics, and accessibility that is strongly influenced by emergent local mesoscale structure.

2.
PLoS Comput Biol ; 17(2): e1008308, 2021 02.
Article in English | MEDLINE | ID: mdl-33577557

ABSTRACT

We present OpenAWSEM and Open3SPN2, new cross-compatible implementations of coarse-grained models for protein (AWSEM) and DNA (3SPN2) molecular dynamics simulations within the OpenMM framework. These new implementations retain the chemical accuracy and intrinsic efficiency of the original models while adding GPU acceleration and the ease of forcefield modification provided by OpenMM's Custom Forces software framework. By utilizing GPUs, we achieve around a 30-fold speedup in protein and protein-DNA simulations over the existing LAMMPS-based implementations running on a single CPU core. We showcase the benefits of OpenMM's Custom Forces framework by devising and implementing two new potentials that allow us to address important aspects of protein folding and structure prediction and by testing the ability of the combined OpenAWSEM and Open3SPN2 to model protein-DNA binding. The first potential is used to describe the changes in effective interactions that occur as a protein becomes partially buried in a membrane. We also introduced an interaction to describe proteins with multiple disulfide bonds. Using simple pairwise disulfide bonding terms results in unphysical clustering of cysteine residues, posing a problem when simulating the folding of proteins with many cysteines. We now can computationally reproduce Anfinsen's early Nobel prize winning experiments by using OpenMM's Custom Forces framework to introduce a multi-body disulfide bonding term that prevents unphysical clustering. Our protein-DNA simulations show that the binding landscape is funneled towards structures that are quite similar to those found using experiments. In summary, this paper provides a simulation tool for the molecular biophysics community that is both easy to use and sufficiently efficient to simulate large proteins and large protein-DNA systems that are central to many cellular processes. These codes should facilitate the interplay between molecular simulations and cellular studies, which have been hampered by the large mismatch between the time and length scales accessible to molecular simulations and those relevant to cell biology.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation/statistics & numerical data , Proteins/chemistry , Software , Binding Sites , Biophysical Phenomena , Computational Biology , Cystine/chemistry , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Folding
3.
Biophys J ; 118(9): 2057-2065, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32320675

ABSTRACT

Chromatin can be viewed as a hierarchically structured fiber that regulates gene expression. It consists of a complex network of DNA and proteins whose characteristic dynamical modes facilitate compaction and rearrangement in the cell nucleus. These modes stem from chromatin's fundamental unit, the nucleosome, and their effects are propagated across length scales. Understanding the effects of nucleosome dynamics on the chromatin fiber, primarily through post-translational modifications that occur on the histones, is of central importance to epigenetics. Within the last decade, imaging and chromosome conformation capture techniques have revealed a number of structural and statistical features of the packaged chromatin fiber at a hitherto unavailable level of resolution. Such experiments have led to increased efforts to develop polymer models that aim to reproduce, explain, and predict the contact probability scaling and density heterogeneity. At nanometer scales, available models have focused on the role of the nucleosome and epigenetic marks on local chromatin structure. At micrometer scales, existing models have sought to explain scaling laws and density heterogeneity. Less work, however, has been done to reconcile these two approaches: bottom-up and top-down models of chromatin. In this perspective, we highlight the multiscale simulation models that are driving toward an understanding of chromatin structure and function, from the nanometer to the micron scale, and we highlight areas of opportunity and some of the prospects for new frameworks that bridge these two scales. Taken together, experimental and modeling advances over the last few years have established a robust platform for the study of chromatin fiber structure and dynamics, which will be of considerable use to the chromatin community in developing an understanding of the interplay between epigenomic regulation and molecular structure.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes , Chromatin , DNA , Histones/metabolism
4.
J Chem Phys ; 150(21): 215102, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31176328

ABSTRACT

A central question in epigenetics is how histone modifications influence the 3D structure of eukaryotic genomes and, ultimately, how this 3D structure is manifested in gene expression. The wide range of length scales that influence the 3D genome structure presents important challenges; epigenetic modifications to histones occur on scales of angstroms, yet the resulting effects of these modifications on genome structure can span micrometers. There is a scarcity of computational tools capable of providing a mechanistic picture of how molecular information from individual histones is propagated up to large regions of the genome. In this work, a new molecular model of chromatin is presented that provides such a picture. This new model, referred to as 1CPN, is structured around a rigorous multiscale approach, whereby free energies from an established and extensively validated model of the nucleosome are mapped onto a reduced coarse-grained topology. As such, 1CPN incorporates detailed physics from the nucleosome, such as histone modifications and DNA sequence, while maintaining the computational efficiency that is required to permit kilobase-scale simulations of genomic DNA. The 1CPN model reproduces the free energies and dynamics of both single nucleosomes and short chromatin fibers, and it is shown to be compatible with recently developed models of the linker histone. It is applied here to examine the effects of the linker DNA on the free energies of chromatin assembly and to demonstrate that these free energies are strongly dependent on the linker DNA length, pitch, and even DNA sequence. The 1CPN model is implemented in the LAMMPS simulation package and is distributed freely for public use.


Subject(s)
Chromatin/chemistry , Models, Chemical , Chromatin Assembly and Disassembly , DNA/chemistry , Epigenesis, Genetic , Histones/chemistry , Nucleic Acid Conformation , Nucleosomes/chemistry
5.
ACS Cent Sci ; 5(2): 341-348, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30834322

ABSTRACT

The supramolecular chromatin fiber is governed by molecular scale energetics and interactions. Such energetics originate from the fiber's building block, the nucleosome core particle (NCP). In recent years, the chromatin fiber has been examined through perturbative methods in attempts to extract the energetics of nucleosome association in the fiber. This body of work has led to different results from experiments and simulations concerning the nucleosome-nucleosome energetics. Here, we expand on previous experiments and use coarse-grained simulations to evaluate the energetics inherent to nucleosomes across a variety of parameters in configurational and environmental space. Through this effort, we are able to uncover molecular processes that are critical to understanding the 30 nm chromatin fiber structure. In particular, we describe the NCP-NCP interactions by relying on an anisotropic energetic landscape, rather than a single potential energy value. The attractions in that landscape arise predominantly from the highly anisotropic interactions provided by the NCP histone N-terminal domain (NTD) tails. Our results are found to be in good agreement with recent nucleosome interaction experiments that suggest a maximum interaction energy of 2.69k B T. Furthermore, we examine the influence of crucial epigenetic modifications, such as acetylation of the H4 tail, and how they modify the underlying landscape. Our results for acetylated NCP interactions are also in agreement with experiment. We additionally find an induced chirality in NCP-NCP interactions upon acetylation that reduces interactions which would correspond to a left-handed superhelical chromatin fiber.

6.
J Chem Phys ; 148(4): 044104, 2018 Jan 28.
Article in English | MEDLINE | ID: mdl-29390830

ABSTRACT

Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

SELECTION OF CITATIONS
SEARCH DETAIL
...