Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 70: 55-63, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25575345

ABSTRACT

We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacancy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.

2.
Nanotechnology ; 24(16): 165703, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23535555

ABSTRACT

We investigate the luminescence properties of 10 nm yttrium aluminum garnet (YAG) nanoparticles doped with Ce ions at 0.2%, 4% and 13% that are designed as active probes for scanning near-field optical microscopy. They are produced by a physical method without any subsequent treatment, which is imposed by the desired application. The structural analysis reveals the amorphous nature of the particles, which we relate to some compositional defects as indicated by the elemental analysis. The optimum emission is obtained with a doping level of 4%. The emission of the YAG nanoparticles doped at 0.2% is strongly perturbed by the crystalline disorder whereas the 13% doped particles hardly exhibit any luminescence. In the latter case, the presence of Ce(4+) ions is confirmed, indicating that the Ce concentration is too high to be incorporated efficiently in YAG nanoparticles in the trivalent state. By a unique procedure combining cathodoluminescence and Rutherford backscattering spectrometry, we demonstrate that the enhancement of the particle luminescence yield is not proportional to the doping concentration, the emission enhancement being larger than the Ce concentration increase. Time-resolved photoluminescence reveals the presence of quenching centres likely related to the crystalline disorder as well as the presence of two distinct Ce ion populations. Eventually, nano-cathodoluminescence indicates that the emission and therefore the distribution of the doping Ce ions and of the defects are homogeneous.

3.
Opt Express ; 19(25): 25749-62, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273967

ABSTRACT

This paper describes the image formation process in optical leakage radiation microscopy of surface plasmon-polaritons with diffraction limited spatial resolution. The comparison of experimentally recorded images with simulations of point-like surface plasmon-polariton emitters allows for an assignment of the observed fringe patterns. A simple formula for the prediction of the fringe periodicity is presented and practically relevant effects of abberations in the imaging system are discussed.


Subject(s)
Computer-Aided Design , Image Enhancement/instrumentation , Microscopy/instrumentation , Models, Theoretical , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Radiation Dosage , Scattering, Radiation
4.
S Afr Med J ; 53(16): 613, 1978 Apr 22.
Article in English | MEDLINE | ID: mdl-675432
SELECTION OF CITATIONS
SEARCH DETAIL
...