Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Dev Nutr ; 8(5): 102144, 2024 May.
Article in English | MEDLINE | ID: mdl-38726027

ABSTRACT

Background: Maternal overweight and obesity has been associated with poor lactation performance including delayed lactogenesis and reduced duration. However, the effect on human milk composition is less well understood. Objectives: We evaluated the relationship of maternal BMI on the human milk metabolome among Guatemalan mothers. Methods: We used data from 75 Guatemalan mothers who participated in the Household Air Pollution Intervention Network trial. Maternal BMI was measured between 9 and <20 weeks of gestation. Milk samples were collected at a single time point using aseptic collection from one breast at 6 mo postpartum and analyzed using high-resolution mass spectrometry. A cross-sectional untargeted high-resolution metabolomics analysis was performed by coupling hydrophilic interaction liquid chromatography (HILIC) and reverse phase C18 chromatography with mass spectrometry. Metabolic features associated with maternal BMI were determined by a metabolome-wide association study (MWAS), adjusting for baseline maternal age, education, and dietary diversity, and perturbations in metabolic pathways were identified by pathway enrichment analysis. Results: The mean age of participants at baseline was 23.62 ± 3.81 y, and mean BMI was 24.27 ± 4.22 kg/m2. Of the total metabolic features detected by HILIC column (19,199 features) and by C18 column (11,594 features), BMI was associated with 1026 HILIC and 500 C18 features. Enriched pathways represented amino acid metabolism, galactose metabolism, and xenobiotic metabolic metabolism. However, no significant features were identified after adjusting for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure (FDRBH < 0.2). Conclusions: Findings from this untargeted MWAS indicate that maternal BMI is associated with metabolic perturbations of galactose metabolism, xenobiotic metabolism, and xenobiotic metabolism by cytochrome p450 and biosynthesis of amino acid pathways. Significant metabolic pathway alterations detected in human milk were associated with energy metabolism-related pathways including carbohydrate and amino acid metabolism.This trial was registered at clinicaltrials.gov as NCT02944682.

2.
Environ Sci Technol ; 58(23): 10162-10174, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38810212

ABSTRACT

Residential biomass burning is an important source of black carbon (BC) exposure among rural communities in low- and middle-income countries. We collected 7165 personal BC samples and individual/household level information from 3103 pregnant women enrolled in the Household Air Pollution Intervention Network trial. Women in the intervention arm received free liquefied petroleum gas stoves and fuel throughout pregnancy; women in the control arm continued the use of biomass stoves. Median (IQR) postintervention BC exposures were 9.6 µg/m3 (5.2-14.0) for controls and 2.8 µg/m3 (1.6-4.8) for the intervention group. Using mixed models, we characterized predictors of BC exposure and assessed how exposure contrasts differed between arms by select predictors. Primary stove type was the strongest predictor (R2 = 0.42); the models including kerosene use, kitchen location, education, occupation, or stove use hours also provided additional explanatory power from the base model adjusted only for the study site. Our full, trial-wide, model explained 48% of the variation in BC exposures. We found evidence that the BC exposure contrast between arms differed by study site, adherence to the assigned study stove, and whether the participant cooked. Our findings highlight factors that may be addressed before and during studies to implement more impactful cookstove intervention trials.


Subject(s)
Cooking , Humans , Female , Pregnancy , Adult , Air Pollution, Indoor , Soot , Carbon , Air Pollutants , Environmental Exposure
3.
Chemosphere ; 348: 140705, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981014

ABSTRACT

Waste collection services are uncommon in rural areas of low-resource countries, causing waste accumulation and subsequent dumping and burning of garbage. Air pollution from household garbage burning, including plastics, has been observed in Jalapa, Guatemala in addition to household air pollution (HAP) from cooking. Adolescent girls often help with these cooking and household tasks, but little is known about their exposures. We characterized 24-h exposures to HAP and household garbage burning in adolescent girls by measuring fine particulate matter (PM2.5), black carbon (BC), urinary biomarkers of polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates. We recruited 60 girls between 13 and 17 years of age who helped with cooking activities and lived with participants of the Household Air Pollution Intervention Network (HAPIN) trial. We recruited n = 30 girls each from the control (wood-burning stove) and intervention (liquefied petroleum gas stove) arms. We also measured real-time kitchen concentrations of BC in 20 homes (33%). PM2.5 and BC were measured in n = 21 control and n = 20 intervention participants. Median concentrations of personal PM2.5 and BC and kitchen BC were lower (p < 0.05) in the intervention arm by 87%, 80%, and 85%, respectively. PAH metabolite concentrations were lower (p < 0.001) for all nine metabolites in intervention (n = 26) compared to control participants (n = 29). Urinary BPA concentrations were 66% higher in participants who reported using cosmetics (p = 0.02), and phthalate concentrations were 63% higher in participants who had reported using hair products during the sample period (p = 0.05). Our results suggest that gas stoves can reduce HAP exposures among adolescents who are not primary cooks at home. Biomarkers of plastic exposure were not associated with intervention status, but some were elevated compared to age- and sex-matched participants of the National Health and Nutrition Examination Survey (NHANES).


Subject(s)
Air Pollution, Indoor , Air Pollution , Female , Humans , Adolescent , Nutrition Surveys , Air Pollution, Indoor/analysis , Guatemala , Air Pollution/analysis , Particulate Matter/analysis , Soot , Cooking , Biomarkers , Rural Population
4.
Environ Pollut ; 291: 118198, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34740288

ABSTRACT

The Household Air Pollution Intervention Network trial is a multi-country study on the effects of a liquefied petroleum gas (LPG) stove and fuel distribution intervention on women's and children's health. There is limited data on exposure reductions achieved by switching from solid to clean cooking fuels in rural settings across multiple countries. As formative research in 2017, we recruited pregnant women and characterized the impact of the intervention on personal exposures and kitchen levels of fine particulate matter (PM2.5) in Guatemala, India, and Rwanda. Forty pregnant women were enrolled in each site. We measured cooking area concentrations of and personal exposures to PM2.5 for 24 or 48 h using gravimetric-based PM2.5 samplers at baseline and two follow-ups over two months after delivery of an LPG cookstove and free fuel supply. Mixed models were used to estimate PM2.5 reductions. Median kitchen PM2.5 concentrations were 296 µg/m3 at baseline (interquartile range, IQR: 158-507), 24 µg/m3 at first follow-up (IQR: 18-37), and 23 µg/m3 at second follow-up (IQR: 14-37). Median personal exposures to PM2.5 were 134 µg/m3 at baseline (IQR: 71-224), 35 µg/m3 at first follow-up (IQR: 23-51), and 32 µg/m3 at second follow-up (IQR: 23-47). Overall, the LPG intervention was associated with a 92% (95% confidence interval (CI): 90-94%) reduction in kitchen PM2.5 concentrations and a 74% (95% CI: 70-79%) reduction in personal PM2.5 exposures. Results were similar for each site. CONCLUSIONS: The intervention was associated with substantial reductions in kitchen and personal PM2.5 overall and in all sites. Results suggest LPG interventions in these rural settings may lower exposures to the WHO annual interim target-1 of 35 µg/m3. The range of exposure contrasts falls on steep sections of estimated exposure-response curves for birthweight, blood pressure, and acute lower respiratory infections, implying potentially important health benefits when transitioning from solid fuels to LPG.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Petroleum , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Child , Child Health , Cooking , Female , Humans , Particulate Matter/analysis , Pregnancy , Pregnant Women , Rural Population , Women's Health
5.
BMC Med Res Methodol ; 21(1): 68, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33845785

ABSTRACT

RATIONALE: The spread of severe acute respiratory syndrome coronavirus-2 has suspended many non-COVID-19 related research activities. Where restarting research activities is permitted, investigators need to evaluate the risks and benefits of resuming data collection and adapt procedures to minimize risk. OBJECTIVES: In the context of the multicountry Household Air Pollution Intervention (HAPIN) trial conducted in rural, low-resource settings, we developed a framework to assess the risk of each trial activity and to guide protective measures. Our goal is to maximize the integrity of reseach aims while minimizing infection risk based on the latest scientific understanding of the virus. METHODS: We drew on a combination of expert consultations, risk assessment frameworks, institutional guidance and literature to develop our framework. We then systematically graded clinical, behavioral, laboratory and field environmental health research activities in four countries for both adult and child subjects using this framework. National and local government recommendations provided the minimum safety guidelines for our work. RESULTS: Our framework assesses risk based on staff proximity to the participant, exposure time between staff and participants, and potential viral aerosolization while performing the activity. For each activity, one of four risk levels, from minimal to unacceptable, is assigned and guidance on protective measures is provided. Those activities that can potentially aerosolize the virus are deemed the highest risk. CONCLUSIONS: By applying a systematic, procedure-specific approach to risk assessment for each trial activity, we were able to protect our participants and research team and to uphold our ability to deliver on the research commitments we have made to our staff, participants, local communities, and funders. This framework can be tailored to other research studies conducted in similar settings during the current pandemic, as well as potential future outbreaks with similar transmission dynamics. The trial is registered with clinicaltrials.gov NCT02944682 on October 26. 2016 .


Subject(s)
Biomedical Research/trends , COVID-19/prevention & control , Pandemics , Risk Assessment/methods , Communicable Disease Control/methods , Humans , Randomized Controlled Trials as Topic , Research Design
7.
J Expo Sci Environ Epidemiol ; 30(6): 990-1000, 2020 11.
Article in English | MEDLINE | ID: mdl-31558836

ABSTRACT

Household air pollution (HAP) generated from solid fuel combustion is a major health risk. Direct measurement of exposure to HAP is burdensome and challenging, particularly for children. In a pilot study of the Household Air Pollution Intervention Network (HAPIN) trial in rural Guatemala, we evaluated an indirect exposure assessment method that employs fixed continuous PM2.5 monitors, Bluetooth signal receivers in multiple microenvironments (kitchen, sleeping area and outdoor patio), and a wearable signal emitter to track an individual's time within those microenvironments. Over a four-month period, we measured microenvironmental locations and reconstructed indirect PM2.5 exposures for women and children during two 24-h periods before and two periods after a liquefied petroleum gas (LPG) stove and fuel intervention delivered to 20 households cooking with woodstoves. Women wore personal PM2.5 monitors to compare direct with indirect exposure measurements. Indirect exposure measurements had high correlation with direct measurements (n = 62, Spearman ρ = 0.83, PM2.5 concentration range: 5-528 µg/m3). Indirect exposure had better agreement with direct exposure measurements (bias: -17 µg/m3) than did kitchen area measurements (bias: -89 µg/m3). Our findings demonstrate that indirect exposure reconstruction is a feasible approach to estimate personal exposure when direct assessment is not possible.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Child , Cooking , Environmental Monitoring , Female , Humans , Particulate Matter/analysis , Pilot Projects , Rural Population
SELECTION OF CITATIONS
SEARCH DETAIL
...