Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 171(2): 295-302, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16725213

ABSTRACT

D-serine and D-aspartate are important regulators of mammalian physiology. D-aspartate is found in nervous and endocrine tissue, specifically in hypothalamic supraoptic and paraventricular nuclei, pituitary, and adrenal medullary cells. Endogenous D-aspartate is selectively degraded by D-aspartate oxidase. We previously reported that adult male mice lacking the gene for D-aspartate oxidase (Ddo(-/-) mice) display elevated concentrations of D-aspartate in several neuronal and neuroendocrine tissues as well as impaired sexual performance and altered autogrooming behaviour. In the present study, we analyzed behaviours relevant to affect, cognition, and motor control in Ddo(-/-) mice. Ddo(-/-) mice display deficits in sensorimotor gating and motor coordination as well as reduced immobility in the forced swim test. Basal corticosterone concentrations are elevated. The Ddo(-/-) mice have D-aspartate immunoreactive cells in the cerebellum and adrenal glands that are not observed in the wild-type mice. However, no differences in anxiety-like behaviour are detected in open field or light-dark preference tests. Also, Ddo(-/-) mice do not differ from wild-type mice in either passive avoidance or spontaneous alternation tasks. Although many of these behavioural deficits may be due to the lack of Ddo during development, our results are consistent with the widespread distribution of D-aspartate and the hypothesis that endogenous D-aspartate serves diverse behavioural functions.


Subject(s)
Anxiety/enzymology , D-Aspartate Oxidase/metabolism , D-Aspartic Acid/metabolism , Exploratory Behavior/physiology , Reflex, Startle/physiology , Acoustic Stimulation , Adrenal Glands/enzymology , Animals , Cerebellum/enzymology , D-Aspartate Oxidase/genetics , Immobility Response, Tonic/physiology , Ion Channel Gating/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Neural Inhibition/physiology , Phenotype , Rotarod Performance Test , Swimming/physiology
2.
J Neurosci ; 26(10): 2814-9, 2006 Mar 08.
Article in English | MEDLINE | ID: mdl-16525061

ABSTRACT

D-aspartate, an abundant D-amino acid enriched in neuroendocrine tissues, can be degraded by D-aspartate oxidase (Ddo). To elucidate the function of D-aspartate, we generated mice with targeted deletion of Ddo (Ddo(-/-)) and observe massive but selective augmentations of D-aspartate in various tissues. The pituitary intermediate lobe, normally devoid of D-aspartate from endogenous Ddo expression, manifests pronounced increases of immunoreactive D-aspartate in Ddo(-/-) mice. Ddo(-/-) mice show markedly diminished synthesis and levels of pituitary proopiomelanocortin/alpha-MSH, associated with decreased melanocortin-dependent behaviors. Therefore, Ddo is the endogenous enzyme that degrades D-aspartate, and Ddo-enriched organs, low in D-aspartate, may represent areas of high turnover where D-aspartate may be physiologically important.


Subject(s)
Behavior, Animal/drug effects , D-Aspartate Oxidase/deficiency , D-Aspartic Acid/pharmacology , Gene Expression Regulation/drug effects , Phenylalanine/analogs & derivatives , Polyenes/metabolism , Age Factors , Animals , Blotting, Northern/methods , Body Mass Index , Chromatography, High Pressure Liquid/methods , Immunohistochemistry/methods , In Situ Hybridization/methods , Liver/metabolism , Mice , Mice, Knockout , Phenylalanine/metabolism , Pituitary Gland/metabolism , Testosterone/blood , alpha-MSH/metabolism
3.
Invest New Drugs ; 21(3): 269-79, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14578677

ABSTRACT

PURPOSE: Penclomedine (PEN), a multichlorinated alpha-picoline derivative which is metabolized to highly reactive alkylating species, was selected for clinical development due to its prominent activity against a wide range of human tumor xenografts when administered either parentally or orally. Its principal dose-limiting toxicity in preclinical and clinical studies has been neurocerebellar toxicity, which has been related to the magnitude of peak plasma PEN concentrations, but not to plasma concentrations of its putative principal alkylating metabolite, 4,o-demethylpenclomedine (DMPEN). These observation, as well as PEN's toxicologic, pharmacologic, and tissue distribution profiles, have suggested that the parent compound is primarily responsible for cerebellar toxicity. The studies described in this report were undertaken to characterize the neuropathology of PEN neurotoxicity, with a long-term goal of developing strategies to maximize its therapeutic index. DESIGN: Male Sprague-Dawley rats were treated with therapeutically relevant doses of PEN, orally and intraperitoneally (i.p.), on various administration schedules, and DMPEN administered i.p. The animals were monitored for neurotoxicity, and brain sections were examined for neuropathology, particularly Purkinje cell loss and neuronal injury. Brain sections were stained using standard histochemical techniques and immunostained with OX-42 to detect microglial cells that are activated following neuronal damage, and calbindin D(28K), a calcium-binding protein expressed by cerebellar Purkinje cells. RESULTS: Dose-related neurocerebellar toxicity associated with parasagittal bands of Purkinje cell degeneration and microglial activation in the cerebellar vermis were evident in rats treated with PEN 100-400 mg/kg i.p. as a single dose. Neuronal injury was not observed in other regions of the brain. Furthermore, neither clinical nor histopathological evidence of cerebellar toxicity was apparent in rats treated with similar total doses of PEN administered i.p. on a dailyx5-day dosing schedule. Similar histological findings, in an identical neuroanatomical distribution, were observed in rats treated with PEN orally; however, the magnitude of the neuronal toxicity was much less than in animals treated with equivalent doses of PEN administered i.p. Although acute lethality occurred in some rats treated with equimolar doses of DMPEN as a single i.p. treatment, surviving animals exhibited neither signs nor histopathological evidence of neurocerebellar toxicity. CONCLUSIONS: PEN produces selective dose- and schedule-dependent Purkinje cell degeneration in the cerebellar vermis of rats, whereas therapeutically relevant doses of PEN administered orally are better tolerated and produce less neurocerebellar toxicity. In addition, roughly equivalent, albeit intolerable, doses of the major active metabolite DMPEN, which was lethal to some animals, produced neither clinical manifestations of neurocerebellar toxicity nor Purkinje cell loss. These results support a rationale for investigating whether PEN administered orally, which may undergo significant first-pass metabolism to DMPEN and other less toxic intermediates, or treatment with DMPEN, itself, may result in less neurocerebellar toxicity and superior therapeutic indices than PEN administered parenterally.


Subject(s)
Antineoplastic Agents/toxicity , Nerve Degeneration/chemically induced , Picolines/toxicity , Purkinje Cells/drug effects , Administration, Oral , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/metabolism , Dose-Response Relationship, Drug , Injections, Intraperitoneal , Male , Nerve Degeneration/pathology , Picolines/blood , Picolines/metabolism , Purkinje Cells/pathology , Rats , Rats, Sprague-Dawley
4.
J Neurosci ; 23(17): 6671-80, 2003 Jul 30.
Article in English | MEDLINE | ID: mdl-12890759

ABSTRACT

Little is known about the role of class 3 semaphorins in the development of CNS circuitry. Several class 3 semaphorins, including semaphorin 3F (Sema3F) bind to the receptor neuropilin-2 to confer chemorepulsive responses in vitro. To understand the role of Sema3F in the establishment of neural circuitry in vivo, we have generated sema3F null and sema3F conditional mutant mice. Inspection of the peripheral nervous system in sema3F null mice reveals that Sema3F is essential for the proper organization of specific cranial nerve projections. Analysis of the CNS in sema3F null mice reveals a crucial role for Sema3F in the rostral forebrain, midbrain, and hippocampus in establishing specific Npn-2 (neuropilin-2)-expressing limbic tracts. Furthermore, we identify Sema3F and Npn-2 as the first guidance cue-receptor pair shown to be essential for controlling the development of amygdaloid circuitry. In addition, we provide genetic evidence in vertebrates for a neuronal requirement of a soluble axon guidance cue in CNS axon guidance. Our data reveal a requirement for neuronal Sema3F in the normal development of the anterior commissure in the ventral forebrain and infrapyramidal tract in the hippocampus. Thus, our results show that Sema3F is the principal ligand for Npn-2-mediated axon guidance events in vivo and is a critical determinant of limbic and peripheral nervous system circuitry.


Subject(s)
Central Nervous System/metabolism , Limbic System/metabolism , Membrane Proteins/physiology , Nerve Net/metabolism , Nerve Tissue Proteins/physiology , Neurons/metabolism , Amygdala/metabolism , Animals , Axons/physiology , Cell Adhesion Molecules/metabolism , Central Nervous System/embryology , Cranial Nerves/embryology , Cranial Nerves/metabolism , Gene Targeting , Hippocampus/embryology , Hippocampus/metabolism , Ligands , Limbic System/embryology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mesencephalon/embryology , Mesencephalon/metabolism , Mice , Mice, Knockout , Mice, Mutant Strains , Nerve Net/embryology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuropilin-2/deficiency , Neuropilin-2/genetics , Neuropilin-2/metabolism , Prosencephalon/embryology , Prosencephalon/metabolism , Synapsins/metabolism
5.
Adv Neurol ; 89: 331-59, 2002.
Article in English | MEDLINE | ID: mdl-11968459

ABSTRACT

The experiments strongly suggested that the reason why Purkinje cells die so easily after global brain ischemia relates to deficiencies in aldolase C and EAAT4 that allow them to survive pathologically intense synaptic input from the inferior olive after the restoration of blood flow. This conclusion is based on: (a) the remarkably tight correspondence between the regional absence of aldolase C and EAAT4 in Purkinje cells and the patterned loss of Purkinje cells after a bout of global brain ischemia; (b) the necessity of the olivocerebellar pathway for the ischemic death of Purkinje cells; and (c) the build-up of pathologically synchronous and high-frequency burst activity within the inferior olive during recovery from ischemia. Indeed, the correspondence between the absence of aldolase C and EAAT4 to sensitivity to ischemia could be demonstrated for zones of Purkinje cells as small as two neurons. A second finding was that Purkinje cells are not uniformly sensitive to transient ischemia, since they die most frequently in zones where aldolase C and EAAT4 are absent. One implication of the experiment is that factors beyond the unique synaptic and membrane properties of Purkinje cells play an important role in determining this neuron's high sensitivity to ischemia. The data strongly imply that two properties of Purkinje cells that make them susceptible to ischemic death are their reduced capability to sequester glutamate and reduced ability to generate energy during anoxia. The patterned death of Purkinje cells is sufficient to induce a form of audiogenic myoclonus, as determined with a neurotoxic dose of ibogaine. Ibogaine-induced myoclonus is recognized behaviorally as a reduced ability to habituate to a startle stimulus and resembles the myoclonic jerk of rats during recovery from a prolonged bout of global brain ischemia. Commonalities of ischemia and ibogaine-induced neurodegeneration are the intricately striped Purkinje cell loss in the posterior lobe and a nearly complete deafferentation of the lateral aspect of the fastigial nucleus from the cerebellar cortex, in particular the dorsolateral protuberance. Thus, the data point strongly to a cerebellar contribution to audiogenic myoclonus. Single-neuron electrophysiology experiments in monkeys have demonstrated that the evoked activity in the deep cerebellar nuclei occurs too late to initiate the startle response (60) and electromyography of the postischemic myoclonus of rats corroborates this view (see Chapter 31) (20). However, the nearly complete loss of GABAergic terminals in the dorsolateral protuberance after Purkinje cell death would be expected to dramatically increase its tonic firing and the background excitation of the brain-stem structures that it innervates. The fastigial nucleus innervates a large number of autonomic and motor structures in the brainstem and diencephalon, including the ventrolateral nucleus of the thalamus and the gigantocellular reticular nucleus in the medulla--structures that have been implicated in human posthypoxic myoclonus (6, 7). We propose that the posthypoxic myoclonic jerk of rats is, at least in part, due to disinhibition of the fastigial nucleus produced by patterned Purkinje cell death in the vermis. The argument is as follows: the loss of GABAergic inhibition in the fastigial nucleus after ischemia leads to diaschisis of the motor thalamus and reticular formation which, in turn, is responsible for enhanced motor excitability and myoclonus. That the audiogenic myoclonus after global brain ischemia in the rat gradually resolves over a period of 2 to 3 weeks is consistent with this view, as restoration of background excitability after CNS damage in rats has been documented to occur within this time-frame (61). Our view brings together the physiologic finding that posthypoxic myoclonus appears to originate in the sensory-motor cortices and/or reticular formation with the consistent anatomical finding of Purkinje cell loss after ischemia, and explains the puzzle of Marsden's unique cases of myoclonus associated with coeliac disease (1). Moreover, our argument is consistent with findings both in rats (62, 63) and humans (64) that damage to the vermis impairs the long-term habituation of the startle reflex. It remains to be determined whether the pathologically enhanced startle responses after vermal damage resemble brain-stem reticular or cortical myoclonus at the electrophysiologic level of analysis. What is the purpose of the regional expression of aldolase C and EAAT4 in Purkinje cells? The close correspondence between the spatial distribution of aldolase C and the parasagittal anatomy of the cerebellum (48) has led to the view that aldolase C may help specify connectivity during development. While the present experiments do not address this issue, they underscore the fact that aldolase plays a fundamental role in metabolism. Because Purkinje cells have a repressed expression of aldolase A (31), whatever role the absence of aldolase C may play during development comes at the price of metabolic frailty later in adulthood. From another point of view, aldolase C and EAAT4 appear to confer upon Purkinje cells the ability to survive their own climbing fiber. Indeed, climbing fibers form a distributed synapse that synchronously releases glutamate (or aspartate) at all levels of the dendritic tree simultaneously (65, 66). Such synchronous activation triggers calcium influx throughout the Purkinje cell dendrites at a magnitude that is unparalleled in the nervous system (12), and, thus, places an extraordinarily high metabolic demand on the Purkinje cell. The apparently reduced level of aldolase in a subpopulation of Purkinje cells provides the condition for energy failure and death during anoxia so long as the climbing fibers are intact or when climbing fiber activation is pharmacologically enhanced under normoxic conditions, such as after ibogaine (53-56). Lastly, the argument that diaschisis produced by patterned cerebellar degeneration leads to thalamo-cortical and reticular hyperexcitability agrees with C. David Marsden and his colleagues' bold demonstration of an inhibitory influence of cerebellar cortex on motor cortex in humans (67). Our anatomic data indicate that the spatially distinct zones of Purkinje cells, which are killed by global brain ischemia, may be the origin of such inhibition.


Subject(s)
Amino Acid Transport System X-AG , Brain Ischemia/physiopathology , Purkinje Cells/physiology , Symporters , Animals , Cell Death , Cerebellum/physiopathology , Excitatory Amino Acid Transporter 4 , Fructose-Bisphosphate Aldolase/deficiency , Glutamate Plasma Membrane Transport Proteins , Hypoxia/complications , Myoclonus/etiology , Rats , Receptors, Glutamate/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...