Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 7717, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36513645

ABSTRACT

Open-conduit basaltic volcanoes can be characterised by sudden large explosive events (paroxysms) that interrupt normal effusive and mild explosive activity. In June-August 2019, one major explosion and two paroxysms occurred at Stromboli volcano (Italy) within only 64 days. Here, via a multifaceted approach using clinopyroxene, we show arrival of mafic recharges up to a few days before the onset of these events and their effects on the eruption pattern at Stromboli, as a prime example of a persistently active, open-conduit basaltic volcano. Our data indicate a rejuvenated Stromboli plumbing system where the extant crystal mush is efficiently permeated by recharge magmas with minimum remobilisation promoting a direct linkage between the deeper and the shallow reservoirs that sustains the currently observed larger variability of eruptive behaviour. Our approach provides vital insights into magma dynamics and their effects on monitoring signals demonstrating the power of petrological studies in interpreting patterns of surficial activity.

2.
R Soc Open Sci ; 8(2): 201539, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33972858

ABSTRACT

Radon (222Rn) and thoron (220Rn) are two isotopes belonging to the noble gas radon (sensu lato) that is frequently employed for the geochemical surveillance of active volcanoes. Temperature gradients operating at subvolcanic conditions may induce chemical and structural modifications in rock-forming minerals and their related 222Rn-220Rn emissions. Additionally, CO2 fluxes may also contribute enormously to the transport of radionuclides through the microcracks and pores of subvolcanic rocks. In view of these articulated phenomena, we have experimentally quantified the changes of 220Rn signal caused by dehydration of a zeolitized tuff exposed to variable CO2 fluxes. Results indicate that, at low CO2 fluxes, water molecules and hydroxyl groups adsorbed on the glassy surface of macro- and micropores are physically removed by an intermolecular proton transfer mechanism, leading to an increase of the 220Rn signal. By contrast, at high CO2 fluxes, 220Rn emissions dramatically decrease because of the strong dilution capacity of CO2 that overprints the advective effect of carrier fluids. We conclude that the sign and magnitude of radon (sensu lato) changes observed in volcanic settings depend on the flux rate of carrier fluids and the rival effects between advective transport and radionuclide dilution.

3.
Sci Rep ; 10(1): 13782, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792572

ABSTRACT

Estimating the quantity of CO2 diffusively emitted from the Earth's surface has important implications for volcanic surveillance and global atmospheric CO2 budgets. However, the identification and quantification of non-hydrothermal contributions to CO2 release can be ambiguous. Here, we describe a multi-parametric approach employed at the Nisyros caldera, Aegean Arc, Greece, to assess the relative influence of deep and shallow gases released from the soil. In April 2019, we measured diffuse soil surface CO2 fluxes, together with their carbon isotope compositions, and at a depth of 80 cm, the CO2 concentration, soil temperature, and the activities of radon and thoron. The contributions of deep CO2 and biogenic CO2 fluxes were distinguished on the basis of their carbon isotope compositions. A Principal Component Analysis (PCA), performed on the measured parameters, effectively discriminates between a deep- and a shallow degassing component. The total CO2 output estimated from a relatively small testing area was two times higher with respect to that observed in a previous survey (October 2018). The difference is ascribed to variation in the soil biogenic CO2 production, that was high in April 2019 (a wet period) and low or absent in October 2018 (a dry period). Accounting for seasonal biogenic activity is therefore critical in monitoring and quantifying CO2 emissions in volcanic areas, because they can partially- or completely overwhelm the volcanic-hydrothermal signal.

4.
R Soc Open Sci ; 6(10): 190782, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31824701

ABSTRACT

Rock substrates beneath active volcanoes are frequently subjected to temperature changes caused by the input of new magma from the depth and/or the intrusion of magma bodies of variable thickness within the subvolcanic rocks. The primary effect of the influx of hot magma is the heating of surrounding host rocks with the consequent modification of their physical and chemical properties. To assess mobilization in subvolcanic thermal regimes, we have performed radon (220Rn) thermal experiments on a phonolitic lava exposed to temperatures in the range of 100-900°C. Results from these experiments indicate that transient Rn signals are not unequivocally related to substrate deformation caused by tectonic stresses, but rather to the temperature-dependent diffusion of radionuclides through the structural discontinuities of rocks which serve as preferential pathways for gas release. Intense heating/cooling cycles are accompanied by rapid expansion and contraction of minerals. Rapid thermal cycling produced both inter- and intra-crystal microfracturing, as well as the formation of macroscopic faults. The increased number of diffusion paths dramatically intensified Rn migration, leading to much higher emissions than temperature-dependent transient changes. This geochemical behaviour is analogous to positive anomalies recorded on active volcanoes where dyke injections produce thermal stress and deformation in the host rocks. An increased Rn signal far away from the location of a magmatic intrusion is also consistent with microfracturing of subsurface rocks over long distances via thermal stress propagation and the opening of new pathways.

5.
Sci Adv ; 4(11): eaat9401, 2018 11.
Article in English | MEDLINE | ID: mdl-30788429

ABSTRACT

Understanding the mechanisms that control the accumulation of large silicic magma bodies in the upper crust is key to determining the potential of volcanoes to form caldera-forming eruptions. Located in one of the most populated regions on Earth, Camp Flegrei is an active and restless volcano that has produced two cataclysmic caldera-forming eruptions and numerous smaller eruptive events over the past 60,000 years. Here, we combine the results of an extensive petrological survey with a thermomechanical model to investigate how the magmatic system shifts from frequent, small eruptions to large caldera-forming events. Our data reveal that the most recent eruption of Monte Nuovo is characterized by highly differentiated magmas akin to those that fed the pre-caldera activity and the initial phases of the caldera-forming eruptions. We suggest that this eruption is an expression of a state shift in magma storage conditions, whereby substantial amounts of volatiles start to exsolve in the shallow reservoir. The presence of an exsolved gas phase has fundamental consequences for the physical properties of the reservoir and may indicate that a large magma body is currently accumulating underneath Campi Flegrei.

6.
In. Associacao Medica Homeopatica Brasileira. Anais do XXI Congresso Brasileiro de Homeopatia. Belo Horizonte, s.n, set. 1992. p.6. (An. Congr. Bras. Hom, 21, 1).
Monography in Portuguese | HomeoIndex Homeopathy | ID: hom-1485

ABSTRACT

Os autores em colaboracao com todos os demais membros atuais do Grupo de Estudos puderam conhecer de perto, nestes ultimos anos, a pessoa, a familia e o trabalho de WALTER EDGARD MAFFEI. De forma ainda mais estreita e prolongada, um dos autores, Galvao Nogueira, estuda e acompanha o pensamento de Maffei desde 1963 quando seu na Faculdade de Medicina de Sorocaba, e de forma ainda mais direta, quando passou a frequentar regularmente as autopsias na Santa Casa de Misericordia de Sao Paulo e a sua residencia, desde 1976. Justifica-se este trabalho em um Congresso de Homeopatia, o primeiro ocorrido apos sua morte, pelo pensamento medico do Mestre, que sem duvida fornece substrato em linguagem medico-cientifica atual ao pensamento de Hahnemann, alem do que, Maffei nos ultimos vinte anos de sua carreira, foi um apologista da Homeopatia


Subject(s)
History, 20th Century , Classical Author Books on Homeopathy , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL
...