Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175904

ABSTRACT

Genome mining using standard bioinformatics tools has allowed for the uncovering of hidden biosynthesis gene clusters for specialized metabolites in Streptomyces genomes. In this work, we have used an alternative approach consisting in seeking "Streptomyces Antibiotic Regulatory Proteins" (SARP) encoding genes and analyzing their surrounding DNA region to unearth cryptic gene clusters that cannot be identified using standard bioinformatics tools. This strategy has allowed the unveiling of the new ahb cluster in Streptomyces argillaceus, which had not been retrieved before using antiSMASH. The ahb cluster is highly preserved in other Streptomyces strains, which suggests a role for their encoding compounds in specific environmental conditions. By combining overexpression of three regulatory genes and generation of different mutants, we were able to activate the ahb cluster, and to identify and chemically characterize the encoded compounds that we have named ahbamycins (AHBs). These constitute a new family of metabolites derived from 3-amino-4-hydroxybenzoate (3,4-AHBA) known for having antibiotic and antitumor activity. Additionally, by overexpressing three genes of the cluster (ahbH, ahbI, and ahbL2) for the synthesis and activation of 3,4-AHBA, a new hybrid compound, AHB18, was identified which had been produced from a metabolic crosstalk between the AHB and the argimycin P pathways. The identification of this new BGC opens the possibility to generate new compounds by combinatorial biosynthesis.


Subject(s)
Anti-Bacterial Agents , Streptomyces , Anti-Bacterial Agents/chemistry , Transcription Factors/metabolism , Multigene Family , Genes, Regulator , Streptomyces/genetics , Streptomyces/metabolism , Hydroxybenzoates/metabolism
2.
Front Plant Sci ; 13: 912089, 2022.
Article in English | MEDLINE | ID: mdl-35845679

ABSTRACT

Australia harbours a rich and highly endemic orchid flora with over 90% of native species found nowhere else. However, little is known about the assembly and evolution of Australia's orchid flora. Here, we used a phylogenomic approach to infer evolutionary relationships, divergence times and range evolution in Pterostylidinae (Orchidoideae), the second largest subtribe in the Australian orchid flora, comprising the genera Pterostylis and Achlydosa. Phylogenetic analysis of 75 plastid genes provided well-resolved and supported phylogenies. Intrageneric relationships in Pterostylis were clarified and monophyly of eight of 10 sections supported. Achlydosa was found to not form part of Pterostylidinae and instead merits recognition at subtribal level, as Achlydosinae. Pterostylidinae were inferred to have originated in eastern Australia in the early Oligocene, coinciding with the complete separation of Australia from Antarctica and the onset of the Antarctic Circumpolar Current, which led to profound changes in the world's climate. Divergence of all major lineages occurred during the Miocene, accompanied by increased aridification and seasonality of the Australian continent, resulting in strong vegetational changes from rainforest to more open sclerophyllous vegetation. The majority of extant species were inferred to have originated in the Quaternary, from the Pleistocene onwards. The rapid climatic oscillations during the Pleistocene may have acted as important driver of speciation in Pterostylidinae. The subtribe underwent lineage diversification mainly within its ancestral range, in eastern Australia. Long-distance dispersals to southwest Australia commenced from the late Miocene onwards, after the establishment of the Nullarbor Plain, which constitutes a strong edaphic barrier to mesic plants. Range expansions from the mesic into the arid zone of eastern Australia (Eremaean region) commenced from the early Pleistocene onwards. Extant distributions of Pterostylidinae in other Australasian regions, such as New Zealand and New Caledonia, are of more recent origin, resulting from long-distance dispersals from the Pliocene onwards. Temperate eastern Australia was identified as key source area for dispersals to other Australasian regions.

3.
Rev. esp. quimioter ; 31(2): 136-145, abr. 2018. tab, graf
Article in English | IBECS | ID: ibc-174509

ABSTRACT

Introduction. The SMART (Study for Monitoring Antimicrobial Resistance Trends) surveillance study monitors antimicrobial susceptibility and extended spectrum β-lactamases (ESBLs) in Gram-negative bacilli recovered from intra-abdominal infections (IAI). Material and methods. Antimicrobial susceptibility of 5,343 isolates from IAI recovered in 11 centres during the 2011-2015 SMART-Spain program was analysed by standard microdilution (EUCAST criteria) and compared with that from 2002-2010. ESBLs were phenotypically detected. Results. Escherichia coli, the most common isolate, significantly decreased in community acquired IAI (60.9% 2002-2010 vs. 56.1% 2011-2015, P=0.0003). It was followed in prevalence by Klebsiella pneumoniae that increased both in the community (8.9% vs. 10.8%, P=0.016) and nosocomial (9.2% vs. 10.8%, P=0.029) IAI and P. aeruginosa, which significantly increased in community acquired IAI (5.6% vs. 8.0%, P=0.0003). ESBLs were more prevalent in K. pneumoniae (16.3%) than in E. coli(9.5%) of nosocomial origin and were more frequently isolated from elderly patients (>60 years). Considering all Enterobacteriaceae, ertapenem (92.3-100%) and amikacin (95.5%-100%) were the most active antimicrobials. Ertapenem activity, unlike amoxicillin-clavulanate or piperacillin-tazobactam, remained virtually unchanged in ESBL (100%) and non-ESBL (98.8%) E. coli producers. Its activity decreased in ESBL-K. pneumonia (74.7%) but was higher than that of amoxicillin-clavulanate (14.0%) and piperacillin-tazobactam (24.0%). Interestingly, ertapenem susceptibility was maintained in >60% of ESBL isolates that were resistant to amoxicillin-clavulanate, piperacillin-tazobactam or luoroquinolones. Conclusions. SMART-Spain results support current guidelines which include ertapenem as empiric treatment in mild-moderate community-acquired IAI, particularly with ESBL producers. These recommendations will need to be updated with the recently introduction of new antimicrobials


Introducción. El estudio SMART (Study for Monitoring Antimicrobial Resistance Trends) monitoriza la sensibilidad antimicrobiana y las β-lactamasas de espectro extendido (BLEE) en bacilos gramnegativos obtenidos de infecciones intraabdominales (IIA). Material y Métodos. Se ha analizado la sensibilidad antimicrobiana (microdilución estándar, criterios EUCAST) y las BLEE (detección fenotípica) de 5.343 aislados de IIA en 11 centros del programa SMART-España durante 2011-2015 en comparación con 2002-2010. Resultados. Escherichia coli, el microorganismo más prevalente, disminuyó significativamente en las IIA de origen comunitario (60,9% 2002-2010 vs. 56,1% 2011-2015, P=0,0003). Fue seguido en prevalencia por Klebsiella pneumoniae que aumentó tanto en IIA comunitaria (8,9% vs. 10,8%, P=0,016) como nosocomial (9,2% vs. 10,8%, P=0,029) y por P. aeruginosa que aumentó en la IIA comunitaria (5,6% vs. 8,0%, P=0,0003). Las BLEE fueron más prevalentes en la IIA nosocomial por K. pneumoniae(16,3%) que por E. coli(9,5%), siendo más frecuentes en pacientes de mayor edad (>60 años). Considerando todas las Enterobacteriaceae, ertapenem (92,3-100%) y amikacina (95,5%-100%) fueron los antimicrobianos más activos. La sensibilidad a ertapenem, al contrario que a amoxicilina-clavulánico o piperacilina-tazobactam, se mantuvo sin cambios en E. coli con (98,8%) y sin BLEE (100%). Su sensibilidad disminuyó en BLEE-K. pneumoniae (74,7%) pero fue mayor que la de amoxicilina-clavulánico (14,0%) o piperacilina-tazobactam (24,0%). Es de resaltar que esta actividad se mantuvo >60% en los aislados con BLEE resistentes a amoxicilina-clavulánico, piperacilina-tazobactam o fluoroquinolonas.Conclusiones. El estudio SMART-España sustenta las guías actuales que incluyen al ertapenem como tratamiento empírico en la IIA leve-moderada comunitaria, en particular con BLEE. Estas recomendaciones precisaran actualizarse con la reciente introducción de nuevos antimicrobianos


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , beta-Lactamases/metabolism , Cross Infection/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Combinations , Escherichia coli , Gram-Negative Bacterial Infections/drug therapy , Klebsiella pneumoniae , Microbial Sensitivity Tests/methods , Spain/epidemiology , beta-Lactamases/analysis , beta-Lactamases/therapeutic use
4.
Front Microbiol ; 8: 194, 2017.
Article in English | MEDLINE | ID: mdl-28239372

ABSTRACT

Genome mining of the mithramycin producer Streptomyces argillaceus ATCC 12956 revealed 31 gene clusters for the biosynthesis of secondary metabolites, and allowed to predict the encoded products for 11 of these clusters. Cluster 18 (renamed cluster arp) corresponded to a type I polyketide gene cluster related to the previously described coelimycin P1 and streptazone gene clusters. The arp cluster consists of fourteen genes, including genes coding for putative regulatory proteins (a SARP-like transcriptional activator and a TetR-like transcriptional repressor), genes coding for structural proteins (three PKSs, one aminotransferase, two dehydrogenases, two cyclases, one imine reductase, a type II thioesterase, and a flavin reductase), and one gene coding for a hypothetical protein. Identification of encoded compounds by this cluster was achieved by combining several strategies: (i) inactivation of the type I PKS gene arpPIII; (ii) inactivation of the putative TetR-transcriptional repressor arpRII; (iii) cultivation of strains in different production media; and (iv) using engineered strains with higher intracellular concentration of malonyl-CoA. This has allowed identifying six new alkaloid compounds named argimycins P, which were purified and structurally characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. Some argimycins P showed a piperidine ring with a polyene side chain (argimycin PIX); others contain also a fused five-membered ring (argimycins PIV-PVI). Argimycins PI-PII showed a pyridine ring instead, and an additional N-acetylcysteinyl moiety. These compounds seem to play a negative role in growth and colony differentiation in S. argillaceus, and some of them show weak antibiotic activity. A pathway for the biosynthesis of argimycins P is proposed, based on the analysis of proposed enzyme functions and on the structure of compounds encoded by the arp cluster.

5.
J Antibiot (Tokyo) ; 70(4): 404-413, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27731336

ABSTRACT

Antibiotic A201A produced by Saccharothrix mutabilis subsp. capreolus NRRL3817 contains an aminonucleoside (N6, N6-dimethyl-3'-amino-3'-deoxyadenosyl), a polyketide (α-methyl-p-coumaric acid) and a disaccharide moiety. The heterologous expression in Streptomyces lividans and Streptomyces coelicolor of a S. mutabilis genomic region of ~34 kb results in the production of A201A, which was identified by microbiological, biochemical and physicochemical approaches, and indicating that this region may contain the entire A201A biosynthetic gene cluster (ata). The analysis of the nucleotide sequence of the fragment reveals the presence of 32 putative open reading frames (ORF), 28 of which according to boundary gene inactivation experiments are likely to be sufficient for A201A biosynthesis. Most of these ORFs could be assigned to the biosynthesis of the antibiotic three structural moieties. Indeed, five ORFs had been previously implicated in the biosynthesis of the aminonucleoside moiety, at least nine were related to the biosynthesis of the polyketide (ata-PKS1-ataPKS4, ata18, ata19, ata2, ata4 and ata7) and six were associated with the synthesis of the disaccharide (ata12, ata13, ata16, ata17, ata5 and ata10) moieties. In addition to AtaP5, three putative methyltransferase genes are also found in the ata cluster (Ata6, Ata8 and Ata11), and no regulatory genes were found.


Subject(s)
Actinomycetales/genetics , Aminoglycosides/biosynthesis , Aminoglycosides/genetics , Anti-Bacterial Agents/biosynthesis , Multigene Family/genetics , Amino Acid Sequence , Base Sequence , Computational Biology , Disaccharides/biosynthesis , Disaccharides/genetics , Gene Targeting , Methyltransferases/genetics , Oligonucleotides/chemistry , Plasmids , Polyketides/metabolism , Streptomyces/genetics , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...