Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 339(6): 602-614, 2023 07.
Article in English | MEDLINE | ID: mdl-37260090

ABSTRACT

Understanding the locomotor characteristics of early diverging ground-walking chameleons (members of the genera Brookesia, Rhampholeon, Palleon, and Rieppeleon) can help to explain how their unique morphology is adapted to fit their environment and mode of life. However, nearly all quantitative studies of chameleon locomotion thus far have focused on the larger "true arboreal" chameleons. We investigated kinematics and spatiotemporal gait characteristics of the Brown Leaf Chameleon (Brookesia superciliaris) on different substrates and compared them with true arboreal chameleons, nonchameleon lizards, and other small arboreal animals. Brookesia exhibits a combination of locomotor traits, some of which are traditionally arboreal, others more terrestrial, and a few that are very unusual. Like other chameleons, Brookesia moved more slowly on narrow dowels than on broad planks (simulating arboreal and terrestrial substrates, respectively), and its speed was primarily regulated by stride frequency rather than stride length. While Brookesia exhibits the traditionally arboreal trait of a high degree of humeral protraction at the beginning of stance, unlike most arboreal tetrapods, it uses smaller shoulder and hip excursions on narrower substrates, possibly reflecting its more terrestrial habits. When moving at very slow speeds, Brookesia often adopts an unusual footfall pattern, lateral-sequence lateral-couplets. Because Brookesia is a member of one of the earliest-diverging groups of chameleons, its locomotion may provide a good model for an intermediate stage in the evolution of arboreal chameleons. Thus, the transition to a fully arboreal way of life in "true arboreal" chameleons may have involved changes in spatiotemporal and kinematic characteristics as well as morphology.


Subject(s)
Lizards , Locomotion , Animals , Gait/physiology , Lizards/physiology , Locomotion/physiology
2.
R Soc Open Sci ; 10(3): 221509, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36998764

ABSTRACT

Regionalization of the vertebral column can help animals adapt to different kinds of locomotion, including arboreal locomotion. Although functional axial regionalization has been described in both chameleons and arboreal mammals, no morphological basis for this functional regionalization in chameleons has been proposed. However, recent studies have described regionalization in the presacral vertebral column of other extant squamates. To investigate possible morphological regionalization in the vertebral column of chameleons, we took morphometric measurements from the presacral vertebrae of 28 chameleon species representing all extant chameleon genera, both fully arboreal and ground-dwelling, and performed comparative analyses. Our results support chameleons exhibiting three or four presacral morphological regions that correspond closely to those in other sauropsids, but we detected evolutionary shifts in vertebral traits occurring in only arboreal chameleons. Specifically, the anterior dorsal region in arboreal chameleons has more vertically oriented zygapophyseal joints, predicting decreased mediolateral flexibility. This shift is functionally significant because stiffening of the anterior thoracic vertebral column has been proposed to help bridge gaps between supports in primates. Thus, specialization of existing morphological regions in the vertebral column of chameleons may have played an important role in the evolution of extreme arboreal locomotion, paralleling the adaptations of arboreal primates.

3.
Dev Dyn ; 251(9): 1576-1612, 2022 09.
Article in English | MEDLINE | ID: mdl-34927301

ABSTRACT

BACKGROUND: Squamate reptiles (lizards, snakes, and amphisbaenians) exhibit incredible diversity in their locomotion, behavior, morphology, and ecological breadth. Although they often are used as models of locomotor diversity, surprisingly little attention has been given to muscle development in squamate reptiles. In fact, the most detailed examination was conducted almost 80 years ago and solely focused on the proximal limb regions. Herein, we present forelimb and hindlimb muscle morphogenesis data for three lizard species with different locomotion and feeding strategies: the desert grassland whiptail lizard, the central bearded dragon, and the veiled chameleon. This study fills critical gaps in our understanding of muscle morphogenesis in squamate reptiles and presents a comparative and temporospatial analysis of muscle development. RESULTS: Our results reveal a conserved pattern of early muscle development among lizards with different adult morphologies and ecologies. The variations that exist are concentrated in distal regions, particularly the specialized autopodia of chameleons, where differentiation of muscles associated with the digits is delayed. CONCLUSIONS: The chameleon autopod provides an example of major evolutionary modifications to the skeleton with only minor disruption of the conserved order and pattern of limb muscle development. This robustness of muscle patterning facilitates the evolution of extreme yet functional phenotypes.


Subject(s)
Lizards , Animals , Biological Evolution , Extremities , Forelimb/anatomy & histology , Forelimb/physiology , Lizards/genetics , Phylogeny , Snakes
4.
Anat Rec (Hoboken) ; 303(2): 218-234, 2020 02.
Article in English | MEDLINE | ID: mdl-30365249

ABSTRACT

Tetrapod limbs are a key innovation implicated in the evolutionary success of the clade. Although musculoskeletal evolution of the pectoral appendage across the fins-to-limbs transition is fairly well documented, that of the pelvic appendage is much less so. The skeletal elements of the pelvic appendage in some tetrapodomorph fish and the earliest tetrapods are relatively smaller and/or qualitatively less similar to those of crown tetrapods than those of the pectoral appendage. However, comparative and developmental works have suggested that the musculature of the tetrapod forelimb and hindlimb was initially very similar, constituting a "similarity bottleneck" at the fins-to-limbs transition. Here, we used extant phylogenetic bracketing and phylogenetic character optimization to reconstruct pelvic appendicular muscle anatomy in several key taxa spanning the fins-to-limbs and water-to-land transitions. Our results support the hypothesis that transformation of the pelvic appendages from fin-like to limb-like lagged behind that of the pectoral appendages. Compared to similar reconstructions of the pectoral appendages, the pelvic appendages of the earliest tetrapods had fewer muscles, particularly in the distal limb (shank). In addition, our results suggest that the first tetrapods had a greater number of muscle-muscle topological correspondences between the pectoral and pelvic appendages than tetrapodomorph fish had. However, ancestral crown-group tetrapods appear to have had an even greater number of similar muscles (both in terms of number and as a percentage of the total number of muscles), indicating that the main topological similarity bottleneck between the paired appendages may have occurred at the origin of the tetrapod crown group. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 303:218-234, 2020. © 2018 American Association for Anatomy.


Subject(s)
Biological Evolution , Forelimb/anatomy & histology , Hindlimb/anatomy & histology , Muscle, Skeletal/anatomy & histology , Animal Fins/anatomy & histology , Animals , Phylogeny
5.
Sci Adv ; 5(5): eaau7459, 2019 05.
Article in English | MEDLINE | ID: mdl-31086814

ABSTRACT

Lobe-fins transformed into limbs during the Devonian period, facilitating the water-to-land transition in tetrapods. We traced the evolution of well-articulated skeletons across the fins-to-limbs transition, using a network-based approach to quantify and compare topological features of fins and limbs. We show that the topological arrangement of bones in pectoral and pelvic appendages evolved in parallel during the fins-to-limbs transition, occupying overlapping regions of the morphospace, following a directional trend, and decreasing their disparity over time. We identify the presence of digits as the morphological novelty triggering topological changes that discriminated limbs from fins. The origin of digits caused an evolutionary shift toward appendages that were less densely and heterogeneously connected, but more assortative and modular. Disparity likewise decreased for both appendages, more markedly until a time concomitant with the earliest-known tetrapod tracks. Last, we rejected the presence of a pectoral-pelvic similarity bottleneck at the origin of tetrapods.


Subject(s)
Biological Evolution , Animal Fins/anatomy & histology , Animals , Extremities/anatomy & histology , Fishes/anatomy & histology , Fishes/classification , Phylogeny , Principal Component Analysis , Reptiles/anatomy & histology , Reptiles/classification
6.
Sci Rep ; 8(1): 6885, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720670

ABSTRACT

Studies of morphological integration and modularity, and of anatomical complexity in human evolution typically focus on skeletal tissues. Here we provide the first network analysis of the musculoskeletal anatomy of both the fore- and hindlimbs of the two species of chimpanzee and humans. Contra long-accepted ideas, network analysis reveals that the hindlimb displays a pattern opposite to that of the forelimb: Pan big toe is typically seen as more independently mobile, but humans are actually the ones that have a separate module exclusively related to its movements. Different fore- vs hindlimb patterns are also seen for anatomical network complexity (i.e., complexity in the arrangement of bones and muscles). For instance, the human hindlimb is as complex as that of chimpanzees but the human forelimb is less complex than in Pan. Importantly, in contrast to the analysis of morphological integration using morphometric approaches, network analyses do not support the prediction that forelimb and hindlimb are more dissimilar in species with functionally divergent limbs such as bipedal humans.


Subject(s)
Lower Extremity/anatomy & histology , Pan paniscus/anatomy & histology , Pan troglodytes/anatomy & histology , Upper Extremity/anatomy & histology , Animals , Humans , Muscle, Skeletal/anatomy & histology
7.
Sci Rep ; 8(1): 2341, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402975

ABSTRACT

Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles - and thus of musculoskeletal structures - in human evolution led to a decrease in network density and complexity in humans.


Subject(s)
Biological Evolution , Facial Muscles/anatomy & histology , Head/anatomy & histology , Musculoskeletal Physiological Phenomena , Neck Muscles/anatomy & histology , Neck/anatomy & histology , Animals , Facial Muscles/physiology , Head/physiology , Humans , Neck/physiology , Neck Muscles/physiology , Primates/anatomy & histology , Primates/physiology , Species Specificity
8.
Evolution ; 72(3): 601-618, 2018 03.
Article in English | MEDLINE | ID: mdl-29363112

ABSTRACT

Tetrapods evolved from within the lobe-finned fishes around 370 Ma. The evolution of limbs from lobe-fins entailed a major reorganization of the skeletal and muscular anatomy of appendages in early tetrapods. Concurrently, a degree of similarity between pectoral and pelvic appendages also evolved. Here, we compared the anatomy of appendages in extant lobe-finned fishes (Latimeria and Neoceratodus) and anatomically plesiomorphic amphibians (Ambystoma, Salamandra) and amniotes (Sphenodon) to trace and reconstruct the musculoskeletal changes that took place during the fins-to-limbs transition. We quantified the anatomy of appendages using network analysis. First, we built network models-in which nodes represent bones and muscles, and links represent their anatomical connections-and then we measured network parameters related to their anatomical integration, heterogeneity, and modularity. Our results reveal an evolutionary transition toward less integrated, more modular appendages. We interpret this transition as a diversification of muscle functions in tetrapods compared to lobe-finned fishes. Limbs and lobe-fins show also a greater similarity between their pectoral and pelvic appendages than ray-fins do. These findings on extant species provide a basis for future quantitative and comprehensive reconstructions of the anatomy of limbs in early tetrapod fossils, and a way to better understand the fins-to-limbs transition.


Subject(s)
Animal Fins/anatomy & histology , Biological Evolution , Fishes/anatomy & histology , Forelimb/anatomy & histology , Hindlimb/anatomy & histology , Musculoskeletal System/anatomy & histology , Urodela/anatomy & histology , Animals , Fossils/anatomy & histology
9.
Biol Rev Camb Philos Soc ; 93(2): 1077-1107, 2018 05.
Article in English | MEDLINE | ID: mdl-29125205

ABSTRACT

The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods. Our synthesis revealed that many tetrapod shoulder muscles probably were already present in tetrapodomorph fish, while most of the more-distal appendicular muscles either arose later from largely undifferentiated dorsal and ventral muscle masses or did not leave clear correlates of attachment in these taxa. Based on this review and meta-analysis, we postulate a stepwise sequence of specific appendicular muscle acquisitions, splits, and fusions that led from the ancestral sarcopterygian pectoral fin to the ancestral tetrapod forelimb. This sequence largely agrees with previous hypotheses based on palaeontological and comparative work, but it is much more comprehensive in terms of both muscles and taxa. Combined with existing information about the skeletal system, our new synthesis helps to illuminate the genetic, developmental, morphological, functional, and ecological changes that were key components of the fins-to-limbs transition.


Subject(s)
Animal Fins/anatomy & histology , Biological Evolution , Extremities/anatomy & histology , Fishes/anatomy & histology , Fossils , Muscle, Skeletal/anatomy & histology , Animals
10.
Sci Rep ; 7(1): 10520, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874673

ABSTRACT

Anatomical network analysis is a framework for quantitatively characterizing the topological organization of anatomical structures, thus providing a way to compare structural integration and modularity among species. Here we apply this approach to study the macroevolution of the forelimb in primates, a structure whose proportions and functions vary widely within this group. We analyzed musculoskeletal network models in 22 genera, including members of all major extant primate groups and three outgroup taxa, after an extensive literature survey and dissections. The modules of the proximal limb are largely similar among taxa, but those of the distal limb show substantial variation. Some network parameters are similar within phylogenetic groups (e.g., non-primates, strepsirrhines, New World monkeys, and hominoids). Reorganization of the modules in the hominoid hand compared to other primates may relate to functional changes such as coordination of individual digit movements, increased pronation/supination, and knuckle-walking. Surprisingly, humans are one of the few taxa we studied in which the thumb musculoskeletal structures do not form an independent anatomical module. This difference may be caused by the loss in humans of some intrinsic muscles associated with the digits or the acquisition of additional muscles that integrate the thumb more closely with surrounding structures.


Subject(s)
Forearm/anatomy & histology , Hand/anatomy & histology , Primates/anatomy & histology , Animals , Arm Bones/anatomy & histology , Biological Evolution , Hand Bones/anatomy & histology , Muscle, Skeletal/anatomy & histology
11.
J Morphol ; 278(9): 1241-1261, 2017 09.
Article in English | MEDLINE | ID: mdl-28517034

ABSTRACT

Chameleon species have recently been adopted as models for evo-devo and macroevolutionary processes. However, most anatomical and developmental studies of chameleons focus on the skeleton, and information about their soft tissues is scarce. Here, we provide a detailed morphological description based on contrast enhanced micro-CT scans and dissections of the adult phenotype of all the forelimb and hindlimb muscles of the Veiled Chameleon (Chamaeleo calyptratus) and compare these muscles with those of other chameleons and lizards. We found the appendicular muscle anatomy of chameleons to be surprisingly conservative considering the remarkable structural and functional modifications of the limb skeleton, particularly the distal limb regions. For instance, the zygodactyl autopodia of chameleons are unique among tetrapods, and the carpals and tarsals are highly modified in shape and number. However, most of the muscles usually present in the manus and pes of other lizards are present in the same configuration in chameleons. The most obvious muscular features related to the peculiar opposable autopodia of chameleons are: (1) presence of broad, V-shaped plantar and palmar aponeuroses, and absence of intermetacarpales and intermetatarsales, between the digits separated by the cleft in each autopod; (2) oblique orientation of the superficial short flexors originating from these aponeuroses, which may allow these muscles to act as powerful adductors of the "super-digits"; and (3) well-developed abductor digiti minimi muscles and abductor pollicis/hallucis brevis muscles, which may act as powerful abductors of the "super-digits."


Subject(s)
Anatomy, Comparative , Biological Evolution , Extremities/anatomy & histology , Lizards/anatomy & histology , Lizards/physiology , Locomotion/physiology , Musculoskeletal System/anatomy & histology , Teratology , Animals , Forelimb/anatomy & histology , Forelimb/physiology , Muscle, Skeletal/anatomy & histology , Trees , X-Ray Microtomography
12.
Sci Rep ; 7(1): 608, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28377592

ABSTRACT

Common chimps and bonobos are our closest living relatives but almost nothing is known about bonobo internal anatomy. We present the first phylogenetic analysis to include musculoskeletal data obtained from a recent dissection of bonobos. Notably, chimpanzees, and in particular bonobos, provide a remarkable case of evolutionary stasis for since the chimpanzee-human split c.8 Ma among >120 head-neck (HN) and forelimb (FL) muscles there were only four minor changes in the chimpanzee clade, and all were reversions to the ancestral condition. Moreover, since the common chimpanzee-bonobo split c.2 Ma there have been no changes in bonobos, so with respect to HN-FL musculature bonobos are the better model for the last common ancestor (LCA) of chimpanzees/bonobos and humans. Moreover, in the hindlimb there are only two muscle absence/presence differences between common chimpanzees and bonobos. Puzzlingly, there is an evolutionary mosaicism between each of these species and humans. We discuss these data in the context of available genomic information and debates on whether the common chimpanzee-bonobo divergence is linked to heterochrony.


Subject(s)
Biological Evolution , Mosaicism , Pan paniscus/anatomy & histology , Pan paniscus/classification , Pan troglodytes/anatomy & histology , Pan troglodytes/classification , Animals , Female , Humans , Male , Pan paniscus/genetics , Pan troglodytes/genetics , Phenotype , Phylogeny , Quantitative Trait, Heritable
13.
J Anat ; 230(4): 532-541, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27976380

ABSTRACT

As a member of the most basal clade of extant ray-finned fishes (actinopterygians) and of one of the most basal clades of osteichthyans (bony fishes + tetrapods), Polypterus can provide insights into the ancestral anatomy of both ray-finned and lobe-finned fishes, including those that gave rise to tetrapods. The pectoral fin of Polypterus has been well described but, surprisingly, neither the bones nor the muscles of the pelvic fin are well known. We stained and dissected the pelvic fin of Polypterus senegalus and Polypterus delhezi to offer a detailed description of its musculoskeletal anatomy. In addition to the previously described adductor and abductor muscles, we found preaxial and postaxial muscles similar to those in the pectoral fin of members of this genus. The presence of pre- and postaxial muscles in both the pectoral and pelvic fins of Polypterus, combined with recent descriptions of similar muscles in the lobe-finned fishes Latimeria and Neoceratodus, suggests that they were present in the most recent common ancestor of bony fishes. These results have crucial implications for the evolution of appendicular muscles in both fish and tetrapods.


Subject(s)
Animal Fins/anatomy & histology , Muscle, Skeletal/anatomy & histology , Pelvis/anatomy & histology , Animals , Fishes/anatomy & histology , Phylogeny
14.
Sci Rep ; 6: 37592, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886207

ABSTRACT

Previous accounts of the origin of tetrapod limbs have postulated a relatively sudden change, after the split between extant lobe-finned fish and tetrapods, from a very simple fin phenotype with only two muscles to the highly complex tetrapod condition. The evolutionary changes that led to the muscular anatomy of tetrapod limbs have therefore remained relatively unexplored. We performed dissections, histological sections, and MRI scans of the closest living relatives of tetrapods: coelacanths and lungfish. Combined with previous comparative, developmental and paleontological information, our findings suggest that the characteristic tetrapod musculoskeletal limb phenotype was already present in the Silurian last common ancestor of extant sarcopterygians, with the exception of the autopod (hand/foot) structures, which have no clear correspondence with fish structures. Remarkably, the two major steps in this long process - leading to the ancestral fin anatomy of extant sarcopterygians and limb anatomy of extant tetrapods, respectively - occurred at the same nodes as the two major similarity bottlenecks that led to the striking derived myological similarity between the pectoral and pelvic appendages within each taxon. Our identification of probable homologies between appendicular muscles of sarcopterygian fish and tetrapods will allow more detailed reconstructions of muscle anatomy in early tetrapods and their relatives.


Subject(s)
Biological Evolution , Extremities/anatomy & histology , Fishes/anatomy & histology , Musculoskeletal System/anatomy & histology , Aging/physiology , Animals , Phenotype , Time Factors
15.
J Exp Zool B Mol Dev Evol ; 326(4): 215-24, 2016 06.
Article in English | MEDLINE | ID: mdl-27245479

ABSTRACT

Surprisingly the oldest formal discipline in medicine (anatomy) has not yet felt the full impact of evolutionary developmental biology. In medical anatomy courses and textbooks, the human body is still too often described as though it is a "perfect machine." In fact, the study of human anatomy predates evolutionary theory; therefore, many of its conventions continue to be outdated, making it difficult to study, understand, and treat the human body, and to compare it with that of other, nonbipedal animals, including other primates. Moreover, such an erroneous view of our anatomy as "perfect" can be used to fuel nonevolutionary ideologies such as intelligent design. In the section An Evolutionary and Developmental Approach to Human Anatomical Position of this paper, we propose the redefinition of the "human standard anatomical position" used in textbooks to be consistent with human evolutionary and developmental history. This redefined position also simplifies, for students and practitioners of the health professions, the study and learning of embryonic muscle groups (each group including muscles derived from the same/ontogenetically closely related primordium/primordia) and joint movements and highlights the topological correspondence between the upper and lower limbs. Section Evolutionary and Developmental Constraints, "Imperfections" and Sports Pathologies continues the theme by describing examples of apparently "illogical" characteristics of the human body that only make sense when one understands the developmental and evolutionary constraints that have accumulated over millions of years. We focus, in particular, on musculoskeletal functional problems and sports pathologies to emphasize the links with pathology and medicine. These examples demonstrate how incorporating evolutionary theory into anatomy education can be helpful for medical students, teachers, researchers, and physicians, as well as for anatomists, functional morphologists, and evolutionary and developmental biologists.


Subject(s)
Anatomy , Biological Evolution , Developmental Biology , Anatomy, Comparative , Animals , Athletic Injuries/pathology , Humans , Pathology , Terminology as Topic , Textbooks as Topic
16.
Anat Rec (Hoboken) ; 299(9): 1224-55, 2016 09.
Article in English | MEDLINE | ID: mdl-27342702

ABSTRACT

Opossums are frequent subjects of developmental studies because marsupials share developmental features not seen in placentals and because Didelphimorpha is the sister-group of other extant Marsupialia. But is the adult marsupial muscular system markedly different from that of placentals or is it, like the skeletal system, very similar? We provide, for the first time, a brief description of all head and limb muscles of Didelphis virginiana based on our dissections and using a unifying nomenclature by integrating the data gathered in our long-term project on the development, homologies, and evolution of the muscles of all major vertebrate taxa. Our data indicate that there were many more muscle synapomorphic changes from the last common ancestor (LCA) of amniotes to the mammalian LCA (63) and from this LCA to the LCA of extant therians (48) than from this latter LCA to the LCA of extant placentals (10 or 11). Importantly, Didelphis is anatomically more plesiomorphic (only 14 changes from LCA of extant therians) than are rats (37 changes) and humans (63 changes), but its musculature is more complex (193 muscles) than that of humans (only 180 muscles). Of the 194 muscles of Didelphis, 172 (89%) are present in rats, meaning that their adult muscle anatomy is indeed very similar. This similarity supports the existence of a common, easy recognizable therian Bauplan, but one that is caused by developmental constraints and by evolutionary change driven by the needs of the embryos/neonates, rather than by a "goal" toward a specific adult plan/"archetype," as the name Bauplan suggests. Anat Rec, 299:1224-1255, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Muscle, Skeletal/anatomy & histology , Phylogeny , Vertebrates/anatomy & histology , Animals , Biological Evolution , Didelphis/anatomy & histology , Head
17.
R Soc Open Sci ; 2(11): 150439, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26716001

ABSTRACT

The lineage leading to modern Crocodylia has undergone dramatic evolutionary changes in morphology, ecology and locomotion over the past 200+ Myr. These functional innovations may be explained in part by morphological changes in the axial skeleton, which is an integral part of the vertebrate locomotor system. Our objective was to estimate changes in osteological range of motion (RoM) and intervertebral joint stiffness of thoracic and lumbar vertebrae with increasing aquatic adaptation in crocodylomorphs. Using three-dimensional virtual models and morphometrics, we compared the modern crocodile Crocodylus to five extinct crocodylomorphs: Terrestrisuchus, Protosuchus, Pelagosaurus, Steneosaurus and Metriorhynchus, which span the spectrum from terrestrial to fully aquatic. In Crocodylus, we also experimentally measured changes in trunk flexibility with sequential removal of osteoderms and soft tissues. Our results for the more aquatic species matched our predictions fairly well, but those for the more terrestrial early crocodylomorphs did not. A likely explanation for this lack of correspondence is the influence of other axial structures, particularly the rigid series of dorsal osteoderms in early crocodylomorphs. The most important structures for determining RoM and stiffness of the trunk in Crocodylus were different in dorsoventral versus mediolateral bending, suggesting that changes in osteoderm and rib morphology over crocodylomorph evolution would have affected movements in some directions more than others.

18.
J Morphol ; 276(11): 1290-310, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26251347

ABSTRACT

Muscles, bones, and tendons in the adult tetrapod limb are intimately integrated, both spatially and functionally. However, muscle and bone evolution do not always occur hand in hand. We asked, how does the loss of limb bones affect limb muscle anatomy, and do these effects vary among different lineages? To answer these questions, we compared limb muscular and skeletal anatomy among gymnophthalmid lizards, which exhibit a remarkable variation in limb morphology and different grades of digit and limb reduction. We mapped the characters onto a phylogeny of the group to assess the likelihood that they were acquired independently. Our results reveal patterns of reduction of muscle and bone elements that did not always coincide and examples of both, convergent and lineage-specific non-pentadactyl musculoskeletal morphologies. Among lineages in which non-pentadactyly evolved independently, the degree of convergence seems to depend on the number of digits still present. Most tetradactyl and tridactyl limbs exhibited profound differences in pattern and degree of muscle loss/reduction, and recognizable morphological convergence occurred only in extremely reduced morphologies (e.g., spike-like appendix). We also found examples of muscles that persisted although the bones to which they plesiomorphically attach had been lost, and examples of muscles that had been lost although their normal bony attachments persisted. Our results demonstrate that muscle anatomy in reduced limbs cannot be predicted from bone anatomy alone, meaning that filling the gap between osteological and myological data is an important step toward understanding this recurrent phenomenon in the evolution of tetrapods.


Subject(s)
Extremities/anatomy & histology , Lizards/anatomy & histology , Musculoskeletal System/anatomy & histology , Animals , Hindlimb/anatomy & histology , Muscles/anatomy & histology , Phylogeny
19.
Nature ; 520(7548): 466-73, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25903628

ABSTRACT

It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.


Subject(s)
Biological Evolution , Branchial Region/embryology , Head/anatomy & histology , Head/embryology , Heart/anatomy & histology , Heart/embryology , Vertebrates/anatomy & histology , Vertebrates/embryology , Animals , Branchial Region/anatomy & histology , Branchial Region/cytology , Mesoderm/cytology , Models, Biological , Muscles/anatomy & histology , Muscles/cytology , Muscles/embryology , Neural Crest/cytology
20.
J Anat ; 225(6): 569-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25418112

ABSTRACT

Crocodiles and their kin (Crocodylidae) use asymmetrical (bounding and galloping) gaits when moving rapidly. Despite being morphologically and ecologically similar, it seems alligators and their kin (Alligatoridae) do not. To investigate a possible anatomical basis for this apparent major difference in locomotor capabilities, we measured relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of 40 individuals from six representative species of Crocodylidae and Alligatoridae. We found that, relative to body mass, Crocodylidae have significantly longer muscle fascicles (increased working range), particularly in the pectoral limb, and generally smaller muscle physiological cross-sectional areas (decreased force-exerting capability) than Alligatoridae. We therefore hypothesise that the ability of some crocodylians to use asymmetrical gaits may be limited more by the ability to make large, rapid limb motions (especially in the pectoral limb) than the ability to exert large limb forces. Furthermore, analysis of scaling patterns in muscle properties shows that limb anatomy in the two clades becomes more divergent during ontogeny. Limb muscle masses, fascicle lengths and physiological cross-sectional areas scale with significantly larger coefficients in Crocodylidae than Alligatoridae. This combination of factors suggests that inter-clade disparity in maximal limb power is highest in adult animals. Therefore, despite their apparent morphological similarities, both mean values and scaling patterns suggest that considerable diversity exists in the locomotor apparatus of extant Crocodylia.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Forelimb/anatomy & histology , Gait/physiology , Hindlimb/anatomy & histology , Muscle, Skeletal/anatomy & histology , Animals , Biomechanical Phenomena , Fascia/anatomy & histology , Range of Motion, Articular/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...