Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Alzheimer Res ; 20(7): 496-505, 2023.
Article in English | MEDLINE | ID: mdl-37641989

ABSTRACT

AIM: In this study, OXYS rats of three ages (1, 3, and 6 months), a proven model of Alzheimer's disease (AD), at various stages of disease progression were used to thoroughly study the effects of amisulpride on behavior and tau protein phosphorylation. BACKGROUND: With the growing number of patients with AD, the problem of finding a cure is very acute. Neurodegeneration in AD has various causes, one of which is hyperphosphorylation of tau protein. OBJECTIVE: This study aimed to investigate whether amisulpride would affect pathological tau phosphorylation in AD. METHODS: We assessed the influence of chronic administration of amisulpride (3 weeks, 3 mg/kg per day, intraperitoneally)-a 5-HT7 receptor inverse agonist-on behavior and tau hyperphosphorylation in OXYS rats (at ages of 1, 3, and 6 months). RESULTS: Chronic administration of amisulpride dramatically decreased tau phosphorylation in the frontal cortex and hippocampus of 3-month-old OXYS rats. Additionally, in 1- and 3-month-old rats' hippocampi, amisulpride diminished the mRNA level of the Cdk5 gene encoding one of the main tau kinases involved in the 5-HT7 receptor-induced effect on tau phosphorylation. CONCLUSION: Thus, We found that chronic administration of amisulpride could reduce pathological tau hyperphosphorylation while reducing anxiety. We propose amisulpride to have therapeutic potential against AD and that it can be the most effective in the early stages of the disease.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , Rats , Animals , Infant , tau Proteins/metabolism , Amisulpride/pharmacology , Amisulpride/therapeutic use , Rats, Wistar , Drug Inverse Agonism , Alzheimer Disease/metabolism , Brain/pathology , Hippocampus/metabolism , Phosphorylation , Disease Models, Animal
2.
Biochemistry (Mosc) ; 88(12): 2023-2042, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38462447

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of ß-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of ß-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Serotonin , Amyloid beta-Peptides/metabolism , Receptors, Serotonin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL