Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37628575

ABSTRACT

This study focuses on expanding knowledge about the genetic diversity of the Altai horse native to Siberia. While studying modern horses from two Altai regions, where horses were subjected to less crossbreeding, we tested the hypothesis, formulated on the basis of morphological data, that the Altai horse is represented by two populations (Eastern and Southern) and that the Mongolian horse has a greater genetic proximity to Eastern Altai horses. Bone samples of ancient horses from different cultures of Altai were investigated to clarify the genetic history of this horse breed. As a genetic marker, we chose hypervariable region I of mitochondrial DNA. The results of the performed phylogenetic and population genetic analyses of our and previously published data confirmed the hypothesis stated above. As we found out, almost all the haplotypes of the ancient domesticated horses of Altai are widespread among modern Altai horses. The differences between the mitochondrial gene pools of the ancient horses of Altai and Mongolia are more significant than between those of modern horses of the respective regions, which is most likely due to an increase in migration processes between these regions after the Early Iron Age.


Subject(s)
DNA, Mitochondrial , Hybridization, Genetic , Animals , Horses/genetics , Phylogeny , DNA, Mitochondrial/genetics , Genes, Mitochondrial , Haplotypes/genetics
2.
Biol J Linn Soc Lond ; 135(4): 722-733, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35359699

ABSTRACT

The brown bear (Ursus arctos) is an iconic carnivoran species of the Northern Hemisphere. Its population history has been studied extensively using mitochondrial markers, which demonstrated signatures of multiple waves of migration, arguably connected with glaciation periods. Among Eurasian brown bears, Siberian populations remain understudied. We have sequenced complete mitochondrial genomes of four ancient (~4.5-40 kya) bears from South Siberia and 19 modern bears from South Siberia and the Russian Far East. Reconstruction of phylogenetic relationships between haplotypes and evaluation of modern population structure have demonstrated that all the studied samples belong to the most widespread Eurasian clade 3. One of the ancient haplotypes takes a basal position relative to the whole of clade 3; the second is basal to the haplogroup 3a (the most common subclade), and two others belong to clades 3a1 and 3b. Modern Siberian bears retain at least some of this diversity; apart from the most common haplogroup 3a, we demonstrate the presence of clade 3b, which was previously found mainly in mainland Eurasia and Northern Japan. Our findings highlight the importance of South Siberia as a refugium for northern Eurasian brown bears and further corroborate the hypothesis of several waves of migration in the Pleistocene.

3.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200099, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34304596

ABSTRACT

Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus, an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus. Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome-autosome fusions and the evolution of recombination rate. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Subject(s)
Biological Evolution , Karyotype , Lizards/genetics , Sex Chromosomes/genetics , Animals , Male , Synaptonemal Complex/genetics
4.
Cytogenet Genome Res ; 161(1-2): 32-42, 2021.
Article in English | MEDLINE | ID: mdl-33677437

ABSTRACT

Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.


Subject(s)
Carps/genetics , DNA/genetics , Ploidies , Animals , Cytogenetics , Diploidy , Female , Gene Duplication , Genome , In Situ Hybridization, Fluorescence , Karyotyping , Male , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Species Specificity
5.
Genes (Basel) ; 11(4)2020 03 30.
Article in English | MEDLINE | ID: mdl-32235544

ABSTRACT

The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.


Subject(s)
Arvicolinae/genetics , Evolution, Molecular , Genetic Markers , Polymorphism, Genetic , Sex Chromosomes/genetics , Animals , Arvicolinae/classification , Female , Genetics, Population , Male , Sex Determination Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...